Visual crowding is the difficulty in identifying an object when surrounded by neighbouring flankers, representing a bottleneck for object perception. Crowding arises not only from the activity of visual areas but also from parietal areas and fronto-parietal network activity. Parietal areas would provide the dorsal-to-ventral guidance for object identification and the fronto-parietal network would modulate the attentional resolution. Several studies highlighted the relevance of beta oscillations (15-25 Hz) in these areas for visual crowding and other connatural visual phenomena. In the present study, we investigated the differential contribution of beta oscillations in the parietal cortex and fronto-parietal network in the resolution of visual crowding. During a crowding task with letter stimuli, high-definition transcranial Alternating Current Stimulation (tACS) in the beta band (18 Hz) was delivered bilaterally on parietal sites, on the right fronto-parietal network, and in a sham regime. Resting-state EEG was recorded before and after stimulation to measure tACS-induced aftereffects. The influence of crowding was reduced only when tACS was delivered bilaterally on parietal sites. In this condition, beta power was reduced after the stimulation. Furthermore, the magnitude of tACS-induced aftereffects varied as a function of individual differences in beta oscillations. Results corroborate the link between parietal beta oscillations and visual crowding, providing fundamental insights on brain rhythms underlying the dorsal-to-ventral guidance in visual perception and suggesting that beta tACS can induce plastic changes in these areas. Remarkably, these findings open new possibilities for neuromodulatory interventions for disorders characterised by abnormal crowding, such as dyslexia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2024.120550 | DOI Listing |
Atten Percept Psychophys
January 2025
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, USA.
As mazes are typically complex, cluttered stimuli, solving them is likely limited by visual crowding. Thus, several aspects of the appearance of the maze - the thickness, spacing, and curvature of the paths, as well as the texture of both paths and walls - likely influence the performance. In the current study, we investigate the effects of perceptual aspects of maze design on maze-solving performance to understand the role of crowding and visual complexity.
View Article and Find Full Text PDFPsychon Bull Rev
January 2025
Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LPNC, 38000, Grenoble, France.
It is striking that visual attention, the process by which attentional resources are allocated in the visual field so as to locally enhance visual perception, is a pervasive component of models of eye movements in reading, but is seldom considered in models of isolated word recognition. We describe BRAID, a new Bayesian word-Recognition model with Attention, Interference and Dynamics. As most of its predecessors, BRAID incorporates three sensory, perceptual, and orthographic knowledge layers together with a lexical membership submodel.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands.
Introduction: Global Visual Selective Attention (VSA) is the ability to integrate multiple visual elements of a scene to achieve visual overview. This is essential for navigating crowded environments and recognizing objects or faces. Clinical pediatric research on global VSA deficits primarily focuses on autism spectrum disorder (ASD).
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Computer Science, Zurich University of Applied Sciences, 8400 Winterthur, Switzerland.
Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control.
View Article and Find Full Text PDFBrain Sci
November 2024
Laser Physics Laboratory, University of Rennes, 35042 Rennes Cedex, France.
Acoustic noise is known to perturb reading for good readers, including children and adults. This external acoustic noise interfering at the multimodal areas in the brain causes difficulties reducing reading and writing performances. Moreover, it is known that people with developmental coordination disorder (DCD) and dyslexia have reading deficits even in the absence of acoustic noise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!