A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanism and effectiveness of enzymatically induced phosphate precipitation (EIPP) in stabilizing coexisting lead, zinc, and cadmium in tailings. | LitMetric

Mechanism and effectiveness of enzymatically induced phosphate precipitation (EIPP) in stabilizing coexisting lead, zinc, and cadmium in tailings.

Environ Pollut

State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK PolyU Joint Laboratory on Solid Waste Science, Wuhan, 430071, China. Electronic address:

Published: April 2024

AI Article Synopsis

  • Lead-zinc tailings ponds pose risks due to heavy metal contamination and stability issues, necessitating effective stabilization methods.
  • The study explores a new method called enzymatically induced phosphate precipitation (EIPP) that transforms unstable heavy metals into stable forms, significantly reducing their leachability.
  • EIPP outperformed other methods, with reduced heavy metal contamination rates of about 90% for acid rain leachability and 60% for bio-extraction, although zinc proved unstable under highly acidic conditions.

Article Abstract

Lead-zinc (Pb-Zn) tailings ponds carry the risk of multiple heavy metals (HMs) contamination and pile destabilization. This poses requirements for in-situ applicable, low-distribution, and effective stabilization/solidification (S/S) methods. For this, the novel enzymatically induced phosphate precipitation (EIPP) method was implemented in this study. Its mechanism and performance on stabilization of composite Pb, Zn, and cadmium (Cd) in tailings were explored and evaluated under typical erosion conditions for the first time. Results show that the EIPP stabilized HMs by chemically transforming the unstable carbonate-bound HMs to stable phosphate precipitates and by physically encapsulating tailings particles with newberyite precipitates. The stabilization effect on the three HMs was ranked as Pb > Zn > Cd. Comparing magnesium resources for the EIPP reactants, the EIPP utilizing Mg(CHCOO) was more effective at decontamination than MgCl because its special pre-activation and re-precipitation function enhanced the chemical transformation function of EIPP. The EIPP stabilization was confirmed to reduce simulated acid rain-leachable and bio-extractive HMs by about 90% and 60%, respectively. Under the prolonged acid attack, treated HMs were ultimately leached through the dissolution mechanism. Zn exhibited significant instability in highly acidic conditions (pH = 2.5-3.5), where its cumulative leaching toxicity after long-term dissolution warrants attention. Overall, EIPP presents a novel and effective strategy for on-site mitigation of composite HMs pollution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.123618DOI Listing

Publication Analysis

Top Keywords

enzymatically induced
8
induced phosphate
8
phosphate precipitation
8
eipp
8
precipitation eipp
8
cadmium tailings
8
hms
7
mechanism effectiveness
4
effectiveness enzymatically
4
eipp stabilizing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: