Coral reefs are increasingly identified as microplastic sinks. Understanding the trapping and deposition effects on microplastics among coral colonies of different morphologies can help identify which corals and coral reefs are at higher risk of microplastic exposure. Here, we used a current-generating saltwater flume to explore microplastic trapping and deposition among branching coral, Pocillopora acuta, colonies with contrasting morphologies (open and compact), together with varying coral surface conditions (live, dead, and waxed), microplastic sizes (400 to 500 μm and 900 to 1000 μm), and seeding points (above-colony and mid-colony). Results revealed that more microplastics were trapped by, and deposited nearer to, compact colonies compared to those with a more open morphology-likely due to differences in flow dynamics. More of the larger microplastics were trapped, as were those introduced at the mid seeding point, but coral surface condition had no significant effect. These findings add to the growing evidence that corals are effective at trapping and facilitating deposition of microplastics. Branching corals with compact structures are potentially at high risk of microplastic pollution impact. We posit that coral composition, i.e. the relative abundance of compact branching colonies, will affect microplastic accumulation in natural reef environments. SYNOPSIS: This study demonstrates the effects of coral morphology on microplastic trapping and deposition, providing mechanistic insights into the factors that contribute to coral reefs acting as microplastic sinks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.171077 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!