Microplastics (MP) which are tiny plastic particles of sizes range from 1 μm (μm) to 5 mm (mm), have become a growing cause of concern due to their widespread presence in the environment and their potential impacts on ecosystems and human health. Marine organisms have the potential to consume microplastics, which could lead to physical injuries, blockages, or the transfer of harmful substances up the food chain. Humans may indirectly consume microplastics through contaminated seafood and water, although the complete scope of health risks is currently under investigation. An essential step in gaining a comprehensive understanding of microplastic pollution in waterbodies is the identification of microplastics, which is also crucial for further development of effective environmental regulations to address its adverse impacts. Majority of the researchers are accomplishing it globally using commercial platforms based on Raman spectroscopy. However, the development of indigenous Raman systems, which can enable microplastic identification, particularly in developing nations, is the need of the hour due to the outrageous cost of commercial platforms. In the current study, a custom-designed micro-Raman spectroscopy system was developed to detect and characterize microplastics from waterbodies. The developed system enabled visualization, size measurement and characterization of microplastics. Experimental parameters were fine-tuned, and a standardized Raman database was established for each type of plastic. This system exhibited high resolution which was capable of analysing microparticles of size up to 5 μm. Principal component analysis was carried out on the experimental Raman data, demonstrating good classification amongst different kinds of plastics. The performance of the developed system in analysing real samples was evaluated through experiments conducted on water samples obtained from the shore of Malpe Beach in Udupi district. The results revealed the presence of polyethylene and polyethylene terephthalate in the samples, along with the detection of pigments like copper phthalocyanine and indigo blue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.120351 | DOI Listing |
ACS Sens
December 2024
UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
Diverse analytical techniques are employed to scrutinize microplastics (MPs)─pervasive at hazardous concentrations across diverse sources ranging from water reservoirs to consumable substances. The limitations inherent in existing methods, such as their diminished detection capacities, render them inadequate for analyzing MPs of diminutive dimensions (microplastics: 1-5 μm; nanoplastics: < 1 μm). Consequently, there is an imperative need to devise methodologies that afford improved sensitivity and lower detection limits for analyzing these pollutants.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Institute of Environmental Engineering and Management, College of Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan. Electronic address:
Microplastics (MPs) contamination in human food is a growing concern due to potential health risks. Recent studies have indicated that MPs have been found in various human tissues and organs, including the placenta, lungs, liver, and blood. This highlights the importance of investigating the presence and concentration of MPs in food products, as it directly relates to human health and safety.
View Article and Find Full Text PDFSci Total Environ
December 2024
ICAR - Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India.
Aquaculture, particularly shrimp farming, is crucial for global food security. However, the increasing presence of microplastics (MPs) in marine environments, shrimp feeds, and atmospheric particles has made MP contamination in shrimp tissues inevitable. This study systematically investigates the abundance, characteristics, and temporal trends (from 15th to the 120th day of culture) of MPs contamination in Litopenaeus vannamei, along with associated feed, water, and sediment across 12 shrimp ponds of two major shrimp-producing regions of India.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Biochemistry and Industrial Biotechnology (BIB) Laboratory, Department of Biotechnology, University of Verona, 37134 Verona, Italy.
Plastic waste pollution has become a global crisis, with millions of tons of plastic expected to accumulate in landfills and in natural environments, posing a serious threat to wildlife and human health. As current recycling methods remain inefficient, there is an urgent need for innovative enzymatic solutions to break down plastics and enable a circular economy approach. In this study, we explore the plastic-degrading potential of microorganisms enriched from activated sludge (AS) sourced from a municipal wastewater treatment plant (WWTP)-a known microplastic-contaminated industrial niche.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA.
Food packaging (FP) is essential for preserving food quality, safety, and extending shelf-life. However, growing concerns about the environmental and health impacts of conventional packaging materials, particularly per- and polyfluoroalkyl substances (PFAS) and microplastics, are driving a major transformation in FP design. PFAS, synthetic compounds with dual hydro- and lipophobicity, have been widely employed in food packaging materials (FPMs) to impart desirable water and grease repellency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!