The Koopman operator has received attention for providing a potentially global linearization representation of the nonlinear dynamical system. To estimate or control the original system, the invertibility problem is introduced into the data-driven modeling, i.e., the observables are required to be reconstructed the original system's states. Existing methods cannot solve this problem perfectly. Only linear or nonlinear but lossy reconstruction can be achieved. This paper proposed a novel data-driven modeling approach, denoted as the Extended Dynamic Mode Decomposition with Invertible Dictionary Learning (EDMD-IDL) to address this issue, which can be interpreted as a further extension of the classical Extended Dynamic Mode Decomposition (EDMD). The Invertible Neural Network (INN) is introduced in the proposed method, where its inverse process provides the explicit inverse on the dictionary functions, thus allowing the nonlinear and lossless reconstruction. An iterative algorithm is designed to solve the extended optimization problem defined by the Koopman operator and INN by combining the optimization algorithm based on the gradient descent and the classical EDMD method, making the method successfully obtain the finite-dimensional approximation of the Koopman operator. The method is tested on various canonical nonlinear dynamical systems and is shown that the predictions obtained in a linear fashion and the ground truth match well over the long-term, where only the initial status is provided. Comparison experiments highlight the superiority of the proposed method over the other EDMD-based methods. Notably, a typical example in fluid dynamics, cylinder wake, illustrates the potential of the method to be further extended to the high-dimensional system with tens of thousands of states. By combining the Proper Orthogonal Decomposition technique, nontrivial Kármán vortex sheet phenomenon is perfectly reconstructed. Our proposed method provides a new paradigm for solving the finite-dimensional approximation of the Koopman operator and applying it to data-driven modeling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.106177 | DOI Listing |
Background: Initial clinical studies of pulsed field ablation (PFA) to treat atrial fibrillation (AF) indicated a >90% durability rate of pulmonary vein isolation (PVI). However, these studies were largely conducted in single centers and involved a limited number of operators. The electrophysiological findings and outcomes in patients undergoing repeat ablation after an initial PF ablation for AF are incompletely understood.
View Article and Find Full Text PDFChaos
January 2025
AIMdyn, Inc., Santa Barbara, California 93101, USA.
Koopman operator theory has found significant success in learning models of complex, real-world dynamical systems, enabling prediction and control. The greater interpretability and lower computational costs of these models, compared to traditional machine learning methodologies, make Koopman learning an especially appealing approach. Despite this, little work has been performed on endowing Koopman learning with the ability to leverage its own failures.
View Article and Find Full Text PDFSci Rep
December 2024
Visual Optics Lab Antwerp (VOLANTIS), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
In cataract surgery, post-surgical stability of the intraocular lens plays a major role. This study aims to explore how the size and decentration of the capsulorhexis affect intraocular lens decentration and tilt by using numerical methods. Finite element models included zonules, ciliary body, capsular bag, and an IOL with two open-loop haptics were built.
View Article and Find Full Text PDFMol Oncol
December 2024
Amsterdam UMC, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, The Netherlands.
Colorectal cancer (CRC) is a significant contributor to cancer-related mortality, emphasizing the need for advanced biomarkers to guide treatment. As part of an international consortium, we previously categorized CRCs into four consensus molecular subtypes (CMS1-CMS4), showing promise for outcome prediction. To facilitate clinical integration of CMS classification in settings where formalin-fixed paraffin-embedded (FFPE) samples are routinely used, we developed NanoCMSer, a NanoString-based CMS classifier using 55 genes.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
January 2025
Department for Cardiovascular Diseases, Jessa Ziekenhuis, Hasselt, Belgium (T.P., P.K., N.A., J.V.).
Background: Pulsed field ablation (PFA) is a promising treatment for atrial fibrillation. We report 1-year freedom from atrial arrhythmia outcomes using monopolar PFA delivered through 3 commercial, contact force-sensing focal catheters.
Methods: ECLIPSE AF (Safety & Clinical Performance Study of Catheter Ablation With the Centauri System for Patients With Atrial Fibrillation; NCT04523545) was a prospective, single-arm, multicenter study evaluating acute and chronic safety and performance using the CENTAURI system to deliver focal PFA with TactiCath SE, StablePoint, and ThermoCool ST.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!