DeepSF-4mC: A deep learning model for predicting DNA cytosine 4mC methylation sites leveraging sequence features.

Comput Biol Med

Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, 110167, China. Electronic address:

Published: March 2024

N-methylcytosine (4mC) is a DNA modification involving the addition of a methyl group to the fourth nitrogen atom of the cytosine base. This modification may influence gene regulation, providing potential insights into gene control mechanisms. Traditional laboratory methods for detecting 4mC DNA methylation have limitations, but the rise of artificial intelligence has introduced efficient computational strategies for 4mC site prediction. Despite this progress, challenges persist in terms of model performance and interpretability. To tackle these challenges, we propose DeepSF-4mC, a deep learning model specifically designed for predicting DNA cytosine 4mC methylation sites by leveraging sequence features. Our approach incorporates multiple encoding techniques to enhance prediction accuracy, increase model stability, and reduce the computational resources needed. Leveraging transfer learning, we harness existing models to enhance performance through learned representations or fine-tuning. Ensemble learning techniques combine predictions from multiple models, boosting robustness and accuracy. This research contributes to DNA methylation analysis and lays the groundwork for understanding 4mC's multifaceted role in biological processes. The web server for DeepSF-4mC is accessible at: http://deepsf-4mc.top/and the original code can be found at: https://github.com/754131799/DeepSF-4mC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108166DOI Listing

Publication Analysis

Top Keywords

deepsf-4mc deep
8
deep learning
8
learning model
8
predicting dna
8
dna cytosine
8
cytosine 4mc
8
4mc methylation
8
methylation sites
8
sites leveraging
8
leveraging sequence
8

Similar Publications

DeepSF-4mC: A deep learning model for predicting DNA cytosine 4mC methylation sites leveraging sequence features.

Comput Biol Med

March 2024

Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China; College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, 110167, China. Electronic address:

N-methylcytosine (4mC) is a DNA modification involving the addition of a methyl group to the fourth nitrogen atom of the cytosine base. This modification may influence gene regulation, providing potential insights into gene control mechanisms. Traditional laboratory methods for detecting 4mC DNA methylation have limitations, but the rise of artificial intelligence has introduced efficient computational strategies for 4mC site prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!