AI Article Synopsis

  • Spin-labeling with electron paramagnetic resonance (EPR) is used to study macromolecular properties like flexibility and hydration by substituting cysteine residues in Bacillus subtilis lipase A (BSLA) with spin-labels while minimizing structural changes.
  • A computational approach helps identify suitable reporter sites for this substitution, confirmed by experiments using circular dichroism and EPR spectroscopy that validate the method's effectiveness.
  • The results suggest that this strategy can be adapted to other macromolecular systems for various studies that require tagging without altering enzyme stability or activity.

Article Abstract

Spin-labeling with electron paramagnetic resonance spectroscopy (EPR) is a facile method for interrogating macromolecular flexibility, conformational changes, accessibility, and hydration. Within we present a computationally based approach for the rational selection of reporter sites in Bacillus subtilis lipase A (BSLA) for substitution to cysteine residues with subsequent modification with a spin-label that are expected to not significantly perturb the wild-type structure, dynamics, or enzymatic function. Experimental circular dichroism spectroscopy, Michaelis-Menten kinetic parameters and EPR spectroscopy data validate the success of this approach to computationally select reporter sites for future magnetic resonance investigations of hydration and hydration changes induced by polymer conjugation, tethering, immobilization, or amino acid substitution in BSLA. Analysis of molecular dynamic simulations of the impact of substitutions on the secondary structure agree well with experimental findings. We propose that this computationally guided approach for choosing spin-labeled EPR reporter sites, which evaluates relative surface accessibility coupled with hydrogen bonding occupancy of amino acids to the catalytic pocket via atomistic simulations, should be readily transferable to other macromolecular systems of interest including selecting sites for paramagnetic relaxation enhancement NMR studies, other spin-labeling EPR studies or any method requiring a tagging method where it is desirable to not alter enzyme stability or activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2024.107203DOI Listing

Publication Analysis

Top Keywords

reporter sites
12
sites bacillus
8
bacillus subtilis
8
subtilis lipase
8
studies spin-labeling
8
sites
5
designing surface
4
surface exposed
4
exposed sites
4
lipase spin-labeling
4

Similar Publications

Reduced lymphoid enhancer-binding factor 1 (LEF1) expression in patients with adenomyosis during the mid-secretory phase leads to impaired endometrial receptivity, affecting embryo implantation. This study investigated the molecular mechanisms underlying reduced endometrial receptivity in 25 adenomyosis patients and 25 controls. Functional experiments were conducted using human endometrial stromal cells (HESCs) and TERT-immortalized HESCs(T-HESCs), with final validation performed using a mouse model.

View Article and Find Full Text PDF

AKT-FoxO1-PCK/ChREBP signaling pathway regulates metabolic liver disease induced by high glucose in largemouth bass.

Int J Biol Macromol

January 2025

National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Starch is widely used in aquaculture because of its low price and the advantages for processing expanded feed. Largemouth bass are naturally type 2 diabetic and intolerant to dietary carbohydrates. In this study, we found that the phosphorylation of AKT and FoxO1 were down-regulated in the fish suffering from metabolic liver disease (MLD).

View Article and Find Full Text PDF

FOXA1 activates NOLC1 transcription through NOTCH pathway to promote cell stemness in lung adenocarcinoma.

Kaohsiung J Med Sci

January 2025

Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China.

Tumor cell stemness plays a pivotal role in generating functional heterogeneity within tumors and is implicated in essential processes such as drug resistance, metastasis, and cell proliferation. Therefore, creating novel tumor diagnostic techniques and therapeutic plans requires a knowledge of the possible processes that preserve the stem cell-like qualities of cancers. Bioinformatics analysis of NOLC1 expression in lung adenocarcinoma (LUAD) and prediction of its upstream transcription factors and their binding sites were completed.

View Article and Find Full Text PDF

Chemical inhibition of eIF4A3 abolishes UPF1 recruitment onto mRNA encoding NMD factors and restores their expression.

Biochem Biophys Res Commun

December 2024

Université Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000, Besançon, France. Electronic address:

Nonsense-Mediated mRNA Decay (NMD) is a key control mechanism of RNA quality widely described to target mRNA harbouring Premature Termination Codon (PTC). However, recent studies suggested the existence of non-canonical pathways which remain unresolved. One of these alternative pathways suggested that specific mRNA could be targeted through their 3' UTR (Untranslated Region), which contain various elements involved in mRNA stability regulation.

View Article and Find Full Text PDF

A new pipeline SPICE identifies novel JUN-IKZF1 composite elements.

Elife

January 2025

Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, United States.

Transcription factor partners can cooperatively bind to DNA composite elements to augment gene transcription. Here, we report a novel protein-DNA binding screening pipeline, termed Spacing Preference Identification of Composite Elements (SPICE), that can systematically predict protein binding partners and DNA motif spacing preferences. Using SPICE, we successfully identified known composite elements, such as AP1-IRF composite elements (AICEs) and STAT5 tetramers, and also uncovered several novel binding partners, including JUN-IKZF1 composite elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!