A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a glycated albumin sensor employing dual aptamer-based extended gate field effect transistors. | LitMetric

Glycated albumin (GA), defined as the percentage of serum albumin glycation, is a mid-term glycemic control marker for diabetes. The concentrations of both glycated human serum albumin (GHSA) and total human serum albumin (HSA) are required to calculate GA. Here, we report the development of a GA sensor employing two albumin aptamers: anti-GHSA aptamer which is specific to GHSA and anti-HSA aptamer which recognizes both glycated and non-glycated HSA. We combine these aptamers with extended gate field effect transistors (EGFETs) to realize GA monitoring without the need to pretreat serum samples, and therefore suitable for point of care and home-testing applications. Using anti-GHSA aptamer-immobilized electrodes and EGFETs, we measured GHSA concentrations between 0.1-10 μM within 20 min. The sensor was able to measure GHSA concentration in the presence of BSA for a range of known GA levels (5-29%). With anti-HSA aptamer-immobilized electrodes and EGFETs, we measured total HSA concentrations from 1-17 μM. Furthermore, GHSA and total HSA concentrations of both healthy and diabetic-level samples were determined with GHSA and HSA sensors. The measured GHSA and total HSA concentrations in three samples were used to determine respective GA percentages, and our calculations agreed with GA levels determined by reference methods. Thus, we developed simple and rapid dual aptamer-based EGFET sensors to monitor GA through measuring GHSA and total HSA concentration, without the need for sample pretreatment, a mandatory step in the current standard of enzymatic GA monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.116118DOI Listing

Publication Analysis

Top Keywords

ghsa total
16
total hsa
16
serum albumin
12
hsa concentrations
12
glycated albumin
8
sensor employing
8
dual aptamer-based
8
extended gate
8
gate field
8
field transistors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!