Objectives: D-alanine is a residue of the backbone structure of Type Ⅰ Lipoteichoic acid (LTA), which is a virulence factor in inflammation caused by gram-positive bacteria. However, the role of D-alanine in infectious bone destruction has not been investigated. We aimed to explore the role of D-alanine in the proliferation, apoptosis, and differentiation of osteoclasts.
Design: Mouse bone marrow-derived macrophages (BMMs) were isolated as osteoclast precursors and stimulated with D-alanine. Cell proliferation and apoptosis were detected using CCK-8 and flow cytometry, respectively. The formation of osteoclasts morphologically observed by tartrate-resistant acid phosphatase staining (TRAP) and immunofluorescence staining. The expressions of osteoclastogenic genes were measured by real-time RT-PCR. The protein expressions of osteoclastogenic markers, p38, and ERK1/2 MAPK signalling were measured by western blot. The expression level of soluble Sema4D was detected via enzyme-linked immunosorbent assay (ELISA).
Results: The cell proliferation of BMMs was significantly inhibited by D-alanine in a dose-dependent manner. Apoptosis of BMMs was markedly activated with the stimulation of D-alanine. The differentiation of BMMs into osteoclasts was significantly inhibited by D-alanine, and the gene and protein expressions of NFATc1, c-Fos, and Blimp decreased. Western blot showed that D-alanine inhibited the phosphorylated p38 and ERK1/2 signalling pathways of BMMs. Moreover, the expression level of soluble Sema4D significantly decreased in the supernatant of BMMs due to the D-alanine intervention.
Conclusion: D-alanine plays a pivotal role in the inhibition of RANKL-induced osteoclastogenesis and might become a potential therapeutic drug for bone-resorptive diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2024.105912 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Laboratory for Spectroscopy, Molecular Modeling and Structure Determination, Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland. Electronic address:
The Raman spectra of lanthanide [Ln(HO)(Ala)](ClO) crystals were measured with 488, 532, 633, and 1064 nm laser lines, and ROA of complexes in water were collected using 532 nm excitation. As in IR and VCD, ν(CO) stretching and β(OCO) bending vibration bands showed a tendency typical to the lanthanide contraction effect. However, in Raman, the effect is less pronounced than the IR spectrum because it is strongly perturbed by lanthanide ion luminescence, which comes from the 4f → 4f transitions.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, School of Science, Xihua University, Chengdu, 610039, PR China.
Based on the enhanced peroxidase-like activity of carbon dots nanozymes (CDszymes), with a specific oxidation reaction of D-amino acid oxidase catalysing the formation of HO from D-amino acid, an ultrasensitive sensing platform, was constructed for the quantitative detection of D-amino acids in saliva. With the increase of D-amino acids concentration, the blue color of catalytic product gradually deepend, the fluorescence CDszymes gradually quenched, and the temperature gradually increased. Using D-alanine as D-amino acid models, the detection limits of D-alanine in colorimetric/photothermal/fluorescent mode were 0.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan.
Latilactobacillus curvatus, found in various fermented foods, is a promising probiotic with unique health benefits. Lipoteichoic acid (LTA) is a characteristic amphiphilic surface polymer of gram-positive bacteria and exhibits immunomodulatory activities. Despite the structural diversity of LTA among different bacterial species and strains, no information is available on the chemical structure of LTA in L.
View Article and Find Full Text PDFMol Ther
January 2025
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:
The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.
View Article and Find Full Text PDFBiomolecules
December 2024
Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia.
The first monomeric pyridoxal-5'-phosphate (PLP)-dependent transaminase from a marine, aromatic-compound-degrading, sulfate-reducing bacterium Tol2, has been studied using structural, kinetic, and spectral methods. The monomeric organization of the transaminase was confirmed by both gel filtration and crystallography. The PLP-dependent transaminase is of the fold type IV and deaminates D-alanine and ()-phenylethylamine in half-reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!