A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bulk Depolymerization of Methacrylate Polymers via Pendent Group Activation. | LitMetric

Bulk Depolymerization of Methacrylate Polymers via Pendent Group Activation.

J Am Chem Soc

George & Josephine Butler Polymer Research Laboratory, Department of Chemistry, Center for Macromolecular Science & Engineering, University of Florida, Gainesville, Florida 32611, United States.

Published: March 2024

In this study, we present an efficient approach for the depolymerization of poly(methyl methacrylate) (PMMA) copolymers synthesized via conventional radical polymerization. By incorporating low mol % phthalimide ester-containing monomers during the polymerization process, colorless and transparent polymers closely resembling unfunctionalized PMMA are obtained, which can achieve >95% reversion to methyl methacrylate (MMA). Notably, our catalyst-free bulk depolymerization method exhibits exceptional efficiency, even for high-molecular-weight polymers, including ultrahigh-molecular-weight (10-10 g/mol) PMMA, where near-quantitative depolymerization is achieved. Moreover, this approach yields polymer byproducts of significantly lower molecular weight, distinguishing it from bulk depolymerization methods initiated from chain ends. Furthermore, we extend our investigation to polymethacrylate networks, demonstrating high extents of depolymerization. This innovative depolymerization strategy offers promising opportunities for the development of sustainable polymethacrylate materials, holding great potential for various applications in polymer science.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c14179DOI Listing

Publication Analysis

Top Keywords

bulk depolymerization
12
depolymerization
6
depolymerization methacrylate
4
methacrylate polymers
4
polymers pendent
4
pendent group
4
group activation
4
activation study
4
study efficient
4
efficient approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!