This report describes the molecular species composition of phosphatidylcholines (PC) transferred from human erythrocytes to acceptor vesicles composed of cholesterol and single PC species in the presence of PC-specific transfer protein from bovine liver. The compositions of the PC isolated from the vesicles were determined by capillary GLC as the diacylglycerol trimethylsilyl ethers. The cellular PC species appearing in the acceptor vesicles were enriched in unsaturated species and showed a low content of dipalmitoyl PC compared to untreated erythrocytes. This trend was independent of the composition of the PC used to construct the acceptor vesicles and it was possible to determine that the relative rates of efflux of the palmitoyl-containing phosphatidylcholines decreased in the order: palmitoyl-linoleoyl greater than palmitoyl-oleoyl greater than dipalmitoyl and in the stearoyl series, stearoyl-linoleoyl greater than stearoyl-oleoyl. No clear trend was distinguished for the influence of chain-length on the efflux, thus preventing an unambiguous assignment of the order of removal of all species from the cell membrane. Results derived for arachidonoyl-containing species were compromised by evidence for oxidation occurring during incubations at 37 degrees C. To confirm that acyl selectivity was also possible during transfer in the absence of the transfer protein, the efflux of 14C-labeled soya PC and [14C]dipalmitoyl PC from prelabeled erythrocytes was measured using plasma as the acceptor. As predicted by the chromatographic analyses, 14C-labeled soya PC effused up to 10-times faster than [14C]dipalmitoyl PC from the red cell membrane. Thus, the more rapid transfer of unsaturated PC cannot be explained entirely as a specificity of the transfer protein and is consistent with the hypothesis that intermolecular interactions involving PC molecules within the erythrocyte membrane, become weaker with increasing unsaturation. The results suggest a potential role of PC-specific transfer protein as a probe of the nature of PC interactions within biological membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2736(85)90306-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!