An Atomic-Scale Vector Network Analyzer.

Small Methods

Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany.

Published: September 2024

Electronic devices have been ever-shrinking toward atomic dimensions and have reached operation frequencies in the GHz range, thereby outperforming most conventional test equipment, such as vector network analyzers (VNA). Here the capabilities of a VNA on the atomic scale in a scanning tunneling microscope are implemented. Nonlinearities present in the voltage-current characteristic of atoms and nanostructures for phase-resolved microwave spectroscopy with unprecedented spatial resolution at GHz frequencies are exploited. The amplitude and phase response up to 9.3 GHz is determined, which permits accurate de-embedding of the transmission line and application of distortion-corrected waveforms in the tunnel junction itself. This enables quantitative characterization of the complex-valued admittance of individual magnetic iron atoms which show a lowpass response with a magnetic-field-tunable cutoff frequency.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202301526DOI Listing

Publication Analysis

Top Keywords

vector network
8
atomic-scale vector
4
network analyzer
4
analyzer electronic
4
electronic devices
4
devices ever-shrinking
4
ever-shrinking atomic
4
atomic dimensions
4
dimensions reached
4
reached operation
4

Similar Publications

Quantitative evaluation of pediatric craniofacial anomalies relies on the accurate identification of anatomical landmarks and structures. While segmentation and landmark detection methods in standard clinical images are available in the literature, image-based methods are not directly applicable to 3D photogrammetry because of its unstructured nature consisting in variable numbers of vertices and polygons. In this work, we propose a graph-based convolutional neural network based on Chebyshev polynomials that exploits vertex coordinates, polygonal connectivity, and surface normal vectors to extract multi-resolution spatial features from the 3D photographs.

View Article and Find Full Text PDF

Interpreting Lung Cancer Health Disparity between African American Males and European American Males.

Proceedings (IEEE Int Conf Bioinformatics Biomed)

December 2024

Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, USA.

Lung cancer remains a predominant cause of cancer-related deaths, with notable disparities in incidence and outcomes across racial and gender groups. This study addresses these disparities by developing a computational framework leveraging explainable artificial intelligence (XAI) to identify both patient- and cohort-specific biomarker genes in lung cancer. Specifically, we focus on two lung cancer subtypes, Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC), examining distinct racial and sex-specific cohorts: African American males (AAMs) and European American males (EAMs).

View Article and Find Full Text PDF

In this study, a binary composite adsorbent based on activated carbon and phosphoric acid geopolymer foam (ACP) was prepared by combining phosphoric acid geopolymer (PAGP) with activated carbon (AC) and applied for the removal of methylene blue (MB). Activated carbon was thoroughly mixed with a mixture of fly ash and metakaolin in varying ratios, followed by phosphoric acid activation and thermal curing. The ACP adsorbent was characterized using scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, X-ray diffractometer (XRD), surface area analyser (SAP), and thermogravimetric analyser (TGA).

View Article and Find Full Text PDF

A systematic review of Machine Learning and Deep Learning approaches in Mexico: challenges and opportunities.

Front Artif Intell

January 2025

CONAHCYT-Instituto Potosino de Investigación Científica y Tecnológica, A.C. División de Geociencias Aplicadas, San Luis Potosí, Mexico.

This systematic review provides a state-of-art of Artificial Intelligence (AI) models such as Machine Learning (ML) and Deep Learning (DL) development and its applications in Mexico in diverse fields. These models are recognized as powerful tools in many fields due to their capability to carry out several tasks such as forecasting, image classification, recognition, natural language processing, machine translation, etc. This review article aimed to provide comprehensive information on the Machine Learning and Deep Learning algorithms applied in Mexico.

View Article and Find Full Text PDF

The Dark Triad (DT), encompassing narcissism, Machiavellianism and psychopathy traits, poses significant societal challenges. Understanding the neural underpinnings of these traits is crucial for developing effective interventions and preventive strategies. Our study aimed to unveil the neural substrates of the DT by examining brain scans from 201 individuals (mean age: 32.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!