A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microbial metabolism of diosgenin by a novel isolated Mycolicibacterium sp. HK-90: A promising biosynthetic platform to produce 19-carbon and 21-carbon steroids. | LitMetric

Microbial metabolism of diosgenin by a novel isolated Mycolicibacterium sp. HK-90: A promising biosynthetic platform to produce 19-carbon and 21-carbon steroids.

Microb Biotechnol

Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.

Published: February 2024

Green manufacture of steroid precursors from diosgenin by microbial replacing multistep chemical synthesis has been elusive. It is currently limited by the lack of strain and degradation mechanisms. Here, we demonstrated the feasibility of this process using a novel strain Mycolicibacterium sp. HK-90 with efficiency in diosgenin degradation. Diosgenin degradation by strain HK-90 involves the selective removal of 5,6-spiroketal structure, followed by the oxygenolytic cleavage of steroid nuclei. Bioinformatic analyses revealed the presence of two complete steroid catabolic gene clusters, SCG-1 and SCG-2, in the genome of strain HK-90. SCG-1 cluster was found to be involved in classic phytosterols or cholesterol catabolic pathway through the deletion of key kstD1 gene, which promoted the mutant m-∆kstD1 converting phytosterols to intermediate 9α-hydroxyandrostenedione (9-OHAD). Most impressively, global transcriptomics and characterization of key genes suggested SCG-2 as a potential gene cluster encoding diosgenin degradation. The gene inactivation of kstD2 in SCG-2 resulted in the conversion of diosgenin to 9-OHAD and 9,16-dihydroxy-pregn-4-ene-3,20-dione (9,16-(OH) -PG) in mutant m-ΔkstD2. Moreover, the engineered strain mHust-ΔkstD1,2,3 with a triple deletion of kstDs was constructed, which can stably accumulate 9-OHAD by metabolizing phytosterols, and accumulate 9-OHAD and 9,16-(OH) -PG from diosgenin. Diosgenin catabolism in strain mHust-ΔkstD1,2,3 was revealed as a progression through diosgenone, 9,16-(OH) -PG, and 9-OHAD to 9α-hydroxytestosterone (9-OHTS). So far, this work is the first report on genetically engineered strain metabolizing diosgenin to produce 21-carbon and 19-carbon steroids. This study presents a promising biosynthetic platform for the green production of steroid precursors, and provide insights into the complex biochemical mechanism of diosgenin catabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880577PMC
http://dx.doi.org/10.1111/1751-7915.14415DOI Listing

Publication Analysis

Top Keywords

diosgenin degradation
12
916-oh -pg
12
diosgenin
10
mycolicibacterium hk-90
8
promising biosynthetic
8
biosynthetic platform
8
steroid precursors
8
strain hk-90
8
engineered strain
8
strain mhust-Δkstd123
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!