Biopreservation refers to the use of natural or controlled microbial single strains or consortia, and/or their metabolites such as short-chain carboxylic acids (SCCA), to improve the shelf-life of foods. This study aimed at establishing a novel Lactobacillaceae-driven bioprocess that led to the production of the SCCA propionate through the cross-feeding on 1,2-propanediol (1,2-PD) derived from the deoxyhexoses rhamnose or fucose. When grown as single cultures in Hungate tubes, strains of Lacticaseibacillus rhamnosus preferred fucose over rhamnose and produced 1,2-PD in addition to lactate, acetate, and formate, while Limosilactobacillus reuteri metabolized 1,2-PD into propionate, propanol and propanal. Loigolactobacillus coryniformis used fucose to produce 1,2-PD and only formed propionate when supplied with 1,2-PD. Fermentates collected from batch fermentations in bioreactor using two-strain consortia (L. rhamnosus and L. reuteri) or fed-batch fermentations of single strain cultures of L. coryniformis with rhamnose contained mixtures of SCCA consisting of mainly lactate and acetate and also propionate. Synthetic mixtures that contained SCCA at concentrations present in the fermentates were more antimicrobial against Salmonella enterica if propionate was present. Together, this study (i) demonstrates the potential of single strains and two-strain consortia to produce propionate in the presence of deoxyhexoses extending the fermentation metabolite profile of Lactobacillaceae, and (ii) emphasizes the potential of applying propionate-containing fermentates as biopreservatives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880516PMC
http://dx.doi.org/10.1111/1751-7915.14392DOI Listing

Publication Analysis

Top Keywords

strains consortia
8
consortia produce
8
propionate-containing fermentates
8
fermentates biopreservatives
8
single strains
8
lactate acetate
8
two-strain consortia
8
propionate
6
12-pd
5
novel lactobacillaceae
4

Similar Publications

Synthetic microbial consortia are collections of multiple strains or species of engineered organisms living in a shared ecosystem. Because they can separate metabolic tasks among different strains, synthetic microbial consortia have myriad applications in developing biomaterials, biomanufacturing, and biotherapeutics. However, synthetic consortia often require burdensome control mechanisms to ensure that the members of the community remain at the correct proportions.

View Article and Find Full Text PDF

Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: A comprehensive review.

Sci Total Environ

January 2025

Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar. Electronic address:

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…).

View Article and Find Full Text PDF

Construing the resilience to osmotic stress using endophytic fungus in maize (Zea mays L.).

Plant Mol Biol

January 2025

Department of Plant Pathology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra (GKVK), Bengaluru, India.

In a wake of shifting climatic scenarios, plants are frequently forced to undergo a spectrum of abiotic and biotic stresses at various stages of growth, many of which have a detrimental effect on production and survival. Naturally, microbial consortia partner up to boost plant growth and constitute a diversified ecosystem against abiotic stresses. Despite this, little is known pertaining to the interplay between endophytic microbes which release phytohormones and stimulate plant development in stressed environments.

View Article and Find Full Text PDF

Assembly and Quantification of Co-Cultures Combining Heterotrophic Yeast with Phototrophic Sugar-Secreting Cyanobacteria.

J Vis Exp

December 2024

Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf; Department of Biochemistry and Molecular Biology, Michigan State University.

With the increasing demand for sustainable biotechnologies, mixed consortia containing a phototrophic microbe and heterotrophic partner species are being explored as a method for solar-driven bioproduction. One approach involves the use of CO2-fixing cyanobacteria that secrete organic carbon to support the metabolism of a co-cultivated heterotroph, which in turn transforms the carbon into higher-value goods or services. In this protocol, a technical description to assist the experimentalist in the establishment of a co-culture combining a sucrose-secreting cyanobacterial strain with a fungal partner(s), as represented by model yeast species, is provided.

View Article and Find Full Text PDF

Engineered Bacteria for Disease Diagnosis and Treatment Using Synthetic Biology.

Microb Biotechnol

January 2025

Department of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.

Using synthetic biology techniques, bacteria have been engineered to serve as microrobots for diagnosing diseases and delivering treatments. These engineered bacteria can be used individually or in combination as microbial consortia. The components within these consortia complement each other, enhancing diagnostic accuracy and providing synergistic effects that improve treatment efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!