Copying information is vital for life's propagation. Current life forms maintain a low error rate in replication, using complex machinery to prevent and correct errors. However, primitive life had to deal with higher error rates, limiting its ability to evolve. Discovering mechanisms to reduce errors would alleviate this constraint. Here, we introduce a new mechanism that decreases error rates and corrects errors in synthetic self-replicating systems driven by self-assembly. Previous work showed that macrocycle replication occurs through the accumulation of precursor material on the sides of the fibrous replicator assemblies. Stochastic simulations now reveal that selective precursor binding to the fiber surface enhances replication fidelity and error correction. Centrifugation experiments show that replicator fibers can exhibit the necessary selectivity in precursor binding. Our results suggest that synthetic replicator systems are more evolvable than previously thought, encouraging further evolution-focused experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202317997 | DOI Listing |
Viruses
January 2025
Clinical Center for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.
View Article and Find Full Text PDFViruses
December 2024
Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.
RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs.
View Article and Find Full Text PDFPathogens
December 2024
Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas 98000, Mexico.
The development of antivirals for respiratory viruses has advanced markedly in response to the growing threat of pathogens such as Influenzavirus (IAV), respiratory syncytial virus (RSV), and SARS-CoV-2. This article reviews the advances and challenges in this field, highlighting therapeutic strategies that target critical stages of the viral replication cycle, including inhibitors of viral entry, replication, and assembly. In addition, innovative approaches such as inhibiting host cellular proteins to reduce viral resistance and repurposing existing drugs are explored, using advanced bioinformatics tools that optimize the identification of antiviral candidates.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva 8410501, Israel.
Phenotypic variability in isogenic bacterial populations is a remarkable feature that helps them cope with external stresses, yet it is incompletely understood. This variability can stem from gene expression noise and/or the unequal partitioning of low-copy-number freely diffusing proteins during cell division. Some high-copy-number components are transiently associated with almost immobile large assemblies (hyperstructures) and may be unequally distributed, contributing to bacterial phenotypic variability.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Gastroenterology and Hepatology, Erasmus Medical Center, Wytemaweg 80, 3015CN Rotterdam, The Netherlands.
Hepatitis B virus (HBV) is a major global health issue, with an estimated 254 million people living with chronic HBV infection worldwide as of 2022. Chronic HBV infection is the leading cause of cirrhosis and liver cancer. Current treatment with nucleos(t)ide analogs is effective in the suppression of viral activity but generally requires lifelong treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!