Iron oxide nanoparticles with a wüstite structure have been prepared by thermal decomposition. In air, they undergo a spontaneous transition into a thermodynamically more stable magnetite structure that grows from the surface. The thickness of this magnetite shell increases with time, thereby producing a series of core-shell nanoparticles. We investigated the kinetics of this phase transition in 23 nm nanocubes using time-resolved XRD, from which the fractions of individual phases were determined by the Rietveld refinement. This kinetics is described theoretically using three coupled reaction-diffusion master equations for the concentrations of oxygen, wüstite, and magnetite, in which both the diffusion of oxygen and its reaction with wüstite are thermally activated. The coefficients of these terms were adjusted so that the predictions of the model reproduce the XRD data at 298 K and 353 K, whereas the predictive capability of the model was assessed by comparing its predictions with measurements at 403 K.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr06254f | DOI Listing |
PLoS One
January 2025
Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Institute of Physics, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
Iron oxide-based nanoparticles are promising materials for cancer thermal therapy and immunotherapy. However, several proofs of concept reported data with murine tumor models that might have limitations for clinical translation. Magnetite is nowadays the most popular nanomaterial, but doping with distinct ions can enhance thermal therapy, namely, magnetic nanoparticle hyperthermia (MNH) and photothermal therapy (PTT).
View Article and Find Full Text PDFJ Pharm Anal
October 2024
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
The overuse of antibiotics has led to the severe contamination of water bodies, posing a considerable hazard to human health. Therefore, the development of an accurate and rapid point-of-care testing (POCT) platform for the quantitative detection of antibiotics is necessary. In this study, Cerium oxide (CeO) and Ferrosoferric oxide (FeO) nanoparticles were simultaneously encapsulated into N-doped nanofibrous carbon microspheres to form of a novel nanozyme (CeFe-NCMzyme) with a porous structure, high surface area, and N-doped carbon material properties, leading to a considerable enhancement of the peroxidase (POD)-like activity compared with that of the CeO or FeO nanoparticles alone.
View Article and Find Full Text PDFEnviron Res
January 2025
Faculty for Chemistry, Department of Physical Chemistry, University of Vienna, Vienna, Austria.
Composite photocatalysts based on metal nanoparticles and functional polymers attract much attention compared to inorganic photocatalysts. In this study, a reusable magnetite/anion exchanger (FeO/PPE-2) functional material is synthesized by a hydrothermal method, and its photocatalytic activity is evaluated for the photocatalytic degradation of Rhodamine B (RhB). The results from materials characterization confirm a well-defined morphology of magnetic FeO/PPE-2 functional material and the formation of FeO nanocrystals with different shapes and sizes on the surface of anion exchange material (PPE-2).
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Iran.
As a primary abiotic constraint for bean cultivation in semi-arid regions, drought stress significantly impacts both the yield and quality of beans. Foliar application of nanofertilizer has been shown to effectively improve crop yield and nutritional quality while mitigating environmental pollution associated with fertilizer runoff. In this study, we conducted a semi-field study using magnetite nanoparticles (FeONPs) to evaluate its effects on the growth, yield, nutrient quality, photosynthetic parameters, and physiological traits in kidney bean (Phaseolus vulgaris L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!