Scalable Dry Process for Fabricating a Na Superionic Conductor-Type Solid Electrolyte Sheet.

ACS Appl Mater Interfaces

Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology (KICET), 101 Soho-ro, Jinju-si, Gyeongsangnam-do 52581, Republic of Korea.

Published: February 2024

The cost reduction and mass production of oxide-based solid electrolytes are critical for the commercialization of all-solid-state batteries. In this study, an environmentally friendly, low-cost, and high-density oxide-based Na superionic conductor-type solid electrolyte sheet was fabricated via a dry process without the use of any solvent. The polytetrafluoroethylene (PTFE), used as a binder, was transformed into thin thread-like structures via shear force, resulting in a flexible solid electrolyte sheet. The solid electrolyte powder quantity was limited to 50 wt % for fabricating a uniform green sheet via the wet process. However, when the dry process was employed for green sheet fabrication, the solid electrolyte powder quantity could be increased to values exceeding 95 wt %. Therefore, the green sheets produced by using the dry process demonstrated a higher density than those fabricated by using the wet process. The binder content and particle size affected the ionic conductivity of a solid electrolyte sheet fabricated via a dry process. The sheet obtained via the blending of 3 wt % PTFE binder with a solid electrolyte powder, finely ground using a planetary ball mill, which exhibited the highest total ionic conductivity of 1.03 mS cm.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c14835DOI Listing

Publication Analysis

Top Keywords

solid electrolyte
28
dry process
20
electrolyte sheet
16
electrolyte powder
12
superionic conductor-type
8
solid
8
conductor-type solid
8
sheet fabricated
8
fabricated dry
8
ptfe binder
8

Similar Publications

Solid polymer electrolytes (SPEs) for symmetrical supercapacitors are proposed herein with activated carbon as electrodes and optimized solid polymer electrolyte membranes, which serve as the separators and electrolytes. We propose the design of a low-cost solid polymer electrolyte consisting of guanidinium nitrate (GuN) and poly(ethylene oxide) (PEO) with poly(vinylpyrrolidone) (PVP). Using the solution casting approach, blended polymer electrolytes with varying GuN weight percentage ratios of PVP and PEO are prepared.

View Article and Find Full Text PDF

Enhanced Interfacial Contact and Lithium-Ion Transport in Ionic Liquid Polymer Electrolyte via In-Situ Electrolyte-Cathode Integration.

Molecules

January 2025

Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.

Solid polymer electrolytes (SPEs) have attracted much attention due to their excellent flexibility, strong interfacial adhesion, and good processibility. However, the poor interfacial contact between the separate solid polymer electrolytes and electrodes leads to large interfacial impedance and, thus, hinders Li transport. In this work, an ionic liquid-modified comb-like crosslinked network composite solid-state electrolyte with an integrated electrolyte/cathode structure is prepared by in situ ultraviolet (UV) photopolymerization.

View Article and Find Full Text PDF

Histology Assessment of Chitosan-Polyvinyl Alcohol Scaffolds Incorporated with CaO Nanoparticles.

Molecules

January 2025

Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.

Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.

View Article and Find Full Text PDF

In this study, in order to solve the problems of resource utilization of electrolytic manganese residue and the destruction of natural resources by the over-exploitation of raw materials of traditional ceramics, electrolytic manganese residue (EMR), red mud (RM), and waste soil (WS) were used to prepare self-foaming expanded ceramsite (SEC), and different firing temperatures and four groups with different mixing ratios of these three raw materials were considered. Water absorption, porosity, heavy metal ion leaching, and compressive strength in the cylinder of SEC were evaluated. The chemical composition and microscopic morphology of SEC were investigated by XRD and SEM.

View Article and Find Full Text PDF

Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when combined with Ground Granulated Blast furnace Slag (GGBS). In this process, GGBS serves as the primary raw material, EMR acts as the sulfate activator, and CaO powder, along with trace amounts of cement, functions as the alkali activator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!