Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conventional neutralizing enzyme-linked immunosorbent assay (ELISA) systems for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mimic the protein-protein interaction between angiotensin-converting enzyme 2 (ACE2) and the receptor-binding domain (RBD). However, an easy and rapidly adaptative ELISA-based system for testing neutralizing antibodies against upcoming SARS-CoV-2 variants is urgently needed. In this study, we closed this gap by developing a tANCHOR-cell-based RBD neutralization assay that avoids time-consuming protein expression and purification followed by coating on ELISA plates. This cell-based assay can be rapidly adopted to monitor neutralizing antibodies (NAbs) against upcoming SARS-CoV-2 variants. We show that the results obtained with the tANCHOR-cell-based assay system strongly correlate with commercially available surrogate assays for testing NAbs. Moreover, this technique can directly measure binding between cell-surface-exposed RBDs and soluble ACE2. With this technique, the degree of antibody escape elicited by emerging SARS-CoV-2 variants in current vaccination regimens can be determined rapidly and reliably.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877956 | PMC |
http://dx.doi.org/10.1016/j.isci.2024.109123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!