Presently, Electric Vehicle batteries are considered to have reached the End of Life once their State of Health falls to 70-80%. However, this criteria is universal to all battery capacities and not based on the specific application requirements. To evaluate whether the End of Life can be extended below the current threshold, the impact of the Internal Resistance increase needs to be addressed. In this sense, this study employs a degradation aware electrothermal model to evaluate the battery performance for different use cases. The findings reveal that capacity constraints are the main cause of the End of Life, followed by power constraints. However, this is highly dependent on the battery capacity. Large capacity batteries tend to reach the End of Life for capacity constraints, whereas smaller ones show power limitations first. The temperature increase has not shown to be a restriction for any of the cases simulated. The decline in performance is for most cases (37.5% of the simulated ones) noticed below 70% State of Health, supporting that the first-life of most batteries can be extended without compromising the vehicle's performance. This is especially the case for most average drivers using large battery capacities, currently emerging on the market. The methodology proposed for the simulated cases can be extended to real time operation in the Battery Management System. Estimating the End of Life in this way can support the maximization of the first-life and only requires an appropriate use of the available data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877338 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e26066 | DOI Listing |
ISA Trans
January 2025
Tenaga Nasional Berhad - Distribution, Kuala Lumpur, Selangor, Malaysia. Electronic address:
As global interest grows in renewable energy sources, the impact of combined Electric Vehicle (EV) and PhotoVoltaic (PV) penetration on the power grid stability requires renewed attention, to incorporate new technologies to maintain the power quality under operational constraints. Energy-saving techniques such as Conservation Voltage Reduction (CVR) allow the power utilities to transmit voltage at a lower operation limit, increasing the generation margin to absorb the peak load demands. Increased reverse PV penetration results in grid overvoltage while EV charging absorbs the reactive power causing grid instability.
View Article and Find Full Text PDFISA Trans
December 2024
GEELY Automobile Research Institute Co. Ltd, Ningbo, Zhejiang 315699, China. Electronic address:
The voltage is one of limited reliable information for battery management system, and the faults of voltage sampling will result in adverse effects and lead to potential risks for operation, which emphasize the importance for investigating the failure modes of voltage sampling and diagnosis algorithm. In this article, a knowledge-data driven sampling diagnosis algorithm is established and an online intelligent diagnosis algorithm is proposed accordingly based on outlier detection with fuzzy entropy. The fault diagnosis algorithm is established and evaluated under positive exploitation, where the knowledge-base of failure mode based on equivalent simulating models is firstly constructed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.
Polymer-based dielectric films are increasingly demanded for devices under high electric fields used in new energy vehicles, photovoltaic grid connections, oil and gas exploration, and aerospace. However, leakage current is one of the significant factors limiting the improvement of the insulation performance. This paper tested the leakage current and condensed state structure characteristics of biaxially oriented polypropylene (BOPP) films and obtained the nonlinear characteristics of leakage current of BOPP films in the range of 40-440 V/μm and 40-110 °C.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Developing persistent and smart underwater markers is critical for improving navigation accuracy and communication capabilities of autonomous underwater vehicles (AUVs). A wireless acoustic identification tag, which uses a piezoelectric transducer tuned in the broadband ultrasonic range (200-500 kHz), was experimentally demonstrated to achieve highly efficient power transfer (source-to-tag electrical power efficiency of >2% at 6 m) and concurrent high data rate and backscatter level communication (>83.3 kbit s-1, >170 dB sound pressure level at 6 m) with potential operating range ≈ 10 m based on analytical extrapolations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!