Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most widespread neurodevelopmental disorders diagnosed in childhood. ADHD is diagnosed by following the guidelines of Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). According to DSM-5, ADHD has not yet identified a specific cause, and thus researchers continue to investigate this field. Therefore, the primary objective of this work is to present a study to find the subset of channels or brain regions that best classify ADHD vs Typically Developing children by means of Electroencephalograms (EEG).
Methods: To achieve this goal, we present a novel approach to identify the brain regions that best classify ADHD using EEG and Deep Learning (DL). First, we perform a filtering and artefact removal process on the EEG signal. Then we generate different subsets of EEG channels depending on their location on the scalp (hemispheres, lobes, sets of lobes and single channels) and using backward and forward stepwise feature selection methods. Finally, we feed the DL neural network with each set, and compute the -.
Results And Conclusions: Based on the obtained results, the Frontal Lobe (FL) (0.8081 -) and the Left Hemisphere (LH) (0.8056 -) provide more significant information detecting individuals with ADHD, than using the entire set of EEG Channels (0.8067 -). However, when combining the Temporal, Parietal and Occipital Lobes (TL, PL, OL), better results (0.8097 -) were obtained compared with using only the FL and LH subsets. The best performance was obtained using Feature Selection Methods. In the case of the Backward Stepwise Feature Selection method, a combination of 14 EEG channels yielded a 0.8281 -. Similarly, using the Forward Stepwise Feature Selection method, a combination of 11 EEG channels yielded a 0.8271 -. These findings hold significant value for physicians in the quest to better understand the underlying causes of ADHD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877365 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e26028 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!