A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Taming heat with tiny pressure. | LitMetric

Heat is almost everywhere. Unlike electricity, which can be easily manipulated, the current ability to control heat is still highly limited owing to spontaneous thermal dissipation imposed by the second law of thermodynamics. Optical illumination and pressure have been used to switch endothermic/exothermic responses of materials via phase transitions; however, these strategies are less cost-effective and unscalable. Here, we spectroscopically demonstrate the glassy crystal state of 2-amino-2-methyl-1,3-propanediol (AMP) to realize an affordable, easily manageable approach for thermal energy recycling. The supercooled state of AMP is so sensitive to pressure that even several megapascals can induce crystallization to the ordered crystal, resulting in a substantial temperature increase of 48 K within 20 s. Furthermore, we demonstrate a proof-of-concept device capable of programable heating with an extremely high work-to-heat conversion efficiency of ∼383. Such delicate and efficient tuning of heat may remarkably facilitate rational utilization of waste heat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878115PMC
http://dx.doi.org/10.1016/j.xinn.2024.100577DOI Listing

Publication Analysis

Top Keywords

taming heat
4
heat tiny
4
tiny pressure
4
heat
4
pressure heat
4
heat electricity
4
electricity easily
4
easily manipulated
4
manipulated current
4
current ability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!