Introduction: Oat-based milk alternatives (OMAs) have become increasingly popular, perhaps due to their low allergenicity and preferred sensory attributes when compared to other milk alternatives. They may also provide health benefits from unique compounds; avenanthramides, avenacosides, and the dietary fibre beta-glucan. This has led to a variety of commercial options becoming available. Being a fairly new product, in comparison to other plant-based milk alternatives (PBMAs), means little research has been undertaken on the sensory profile, and how it is influenced by the physical and chemical properties.
Methods: This study investigated the sensory, physical and chemical profiles of current commercially available OMAs, that varied in fortification, use of stabilisers, and oat content. The volatile compounds and their respective aromas were analysed using solid phase microextraction followed by gas chromatography mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O). Liquid chromatography mass spectrometry (LC-MS) was used for identification of avenanthramides and avenacosides. Particle size and polydispersity index (PDI) were analysed using a Mastersizer and Zetasizer, respectively, with colour analysis carried out using a colourimeter, and viscosity measurements using a rheometer. Descriptive sensory profiling was used to assess the impact on the sensory characteristics of the different samples and the sensory data acquired were correlated with the instrumental data.
Results: Samples with smaller particle size appeared whiter-both instrumentally and perceptually. The only clear plastic packaged product differed substantially in volatile profile from all other products, with a higher abundance of many volatile compounds, and high overall perceived aroma. Avenanthramides and avenacosides were present in all samples, but differed significantly in abundance between them.
Discussion: The results suggested smaller particle size leads to whiter colour, whilst differences in processing and packaging may contribute to significant differences in aroma. Astringency did not differ significantly between samples, suggesting that the variation in the concentrations of avenacosides and avenanthramides were below noticeable differences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877596 | PMC |
http://dx.doi.org/10.3389/fnut.2024.1345371 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!