Light-Responsive Materials in Droplet Manipulation for Biochemical Applications.

Adv Mater

Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.

Published: February 2024

Miniaturized droplets, characterized by well-controlled microenvironments and capability for parallel processing, have significantly advanced the studies on enzymatic evolution, molecular diagnostics, and single-cell analysis. However, manipulation of small-sized droplets, including moving, merging, and trapping of the targeted droplets for complex biochemical assays and subsequent analysis, is not trivial and remains technically demanding. Among various techniques, light-driven methods stand out as a promising candidate for droplet manipulation in a facile and flexible manner, given the features of contactless interaction, high spatiotemporal resolution, and biocompatibility. This review therefore compiles an in-depth discussion of the governing mechanisms underpinning light-driven droplet manipulation. Besides, light-responsive materials, representing the core of light-matter interaction and the key character converting light into different forms of energy, are particularly assessed in this review. Recent advancements in light-responsive materials and the most notable applications are comprehensively archived and evaluated. Continuous innovations and rational engineering of light-responsive materials are expected to propel the development of light-driven droplet manipulation, equip droplets with enhanced functionality, and broaden the applications of droplets for biochemical studies and routine biochemical investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202313935DOI Listing

Publication Analysis

Top Keywords

light-responsive materials
16
droplet manipulation
16
light-driven droplet
8
manipulation
5
droplets
5
light-responsive
4
droplet
4
materials droplet
4
biochemical
4
manipulation biochemical
4

Similar Publications

Light-responsive hydrogels are highly valued for their dynamic mechanical properties and biocompatibility. In this study, we present a hydrogel system that can either soften or strengthen on green light exposure, or remain unresponsive to light, depending on the addition of adenosyl cobalamin (AdoCbl) and Co2+. These protein-based hydrogels were formed using genetically encoded SpyTag-SpyCatcher chemistry and included green light-sensitive CarHc protein domains.

View Article and Find Full Text PDF

Molecular photoswitch research has drawn much attention in the last century owing to its great potential in the development of smart materials. However, photoswitches suitable for constructing light-responsive luminescent materials remain limited, especially those involving triplet-state phosphorescence. Herein, we designed a novel molecular photoswitch based on the conformation transition of phenothiazine derivatives, minimizing steric hindrance (-CH > -Cl > -F) to regulate the conformation transition process while introducing a cyanobenzene acceptor to promote phosphorescence emission potential.

View Article and Find Full Text PDF

Visible light-responsive enrofloxacin PEC aptasensor based on CN QDs sensitized BiOBr nanosheets.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:

Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.

View Article and Find Full Text PDF

Reversible light-responsive protein hydrogel for on-demand cell encapsulation and release.

Acta Biomater

January 2025

Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, 78712, USA. Electronic address:

The design of biomaterials that can reconfigure on-demand in response to external stimuli is an emerging area in materials research. However, achieving reversible assembly of protein-based biomaterials by light input remains a major challenge. Here, we present the engineering of a new protein material that is capable of switching between liquid and solid state reversibly, controlled by lights of different wavelengths.

View Article and Find Full Text PDF

Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar-Thermal Energy Management.

Molecules

January 2025

Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.

The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!