Although significant advancements have been achieved in lead-tin (Pb-Sn) alloyed perovskite solar cells (PSCs), their power conversion efficiency (PCE) remains inferior to that of their Pb-based counterparts, primarily due to higher open-circuit voltage () losses and lower fill factors (FFs). Herein, we report both perovskite top and bottom interfacial improvements by incorporating a facile fluorophenylethylammonium iodide (p-FPEAI)/ethyl acetate (EA) solution during the film crystal growth. Based on the analysis of perovskite crystallization, film growth, and strain relaxation, the mechanisms behind these interfacial improvements have been well understood. Furthermore, p-FPEAI could reduce the defect density and nonradiative recombination losses, thus attributing to the improved and FF. Finally, the treated device achieved a PCE of 20.14% with a of up to 0.84 V, which is among the highest reported values so far for Pb-Sn alloyed PSCs without additional precursor additives. In addition, the unencapsulated p-FPEAI-treated device maintained its initial efficiency of approximately 92% after being kept in a nitrogen atmosphere for 1 month, in contrast to the control device which retained only 30% of its initial value. Our findings provide a comprehension for understanding the effect of bulky cations as antisolvents on fabricating highly efficient Pb-Sn alloyed perovskite solar cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c19237 | DOI Listing |
Inorg Chem
January 2025
School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, PR China.
This study presents the synthesis and characterization of CsNaBiCl nanocrystals (NCs) doped with varying concentrations of In to improve their luminescent properties. Utilizing a colloidal solution method, we systematically varied the In concentration to identify the optimal alloying level for enhancing the photoluminescence (PL) properties of the CsNaBiCl NCs. Structural analysis confirmed that the In-alloyed NCs maintained high crystallinity and a uniform cubic shape.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems.
View Article and Find Full Text PDFACS Nano
January 2025
Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy.
We report the synthesis of ethylammonium lead iodide (EAPbI) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large -cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI nanocrystals are highly unstable, evolving to a nonperovskite δ-EAPbI polymorph within 1 day.
View Article and Find Full Text PDFACS Nano
December 2024
School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
2D Ruddlesden-Popper (RP) perovskites, upon inclusion of a chiral amine, exhibit chirality-induced spin selectivity (CISS). Although alloying at the halogen site in MBA-based RPs (MBA: methylbenzylammonium) is one of the suitable routes to tune the CISS effect, the mixed-halide RP perovskites exhibited complete suppression of chirality when probed through circular dichroism (CD). Here, we present the CISS effect in a series of mixed-halide RP perovskites.
View Article and Find Full Text PDFSmall Methods
December 2024
Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!