The development of novel protein-based therapeutics, such as monoclonal antibodies (mAbs), is often limited due to challenges associated with maintaining the stability of these formulations during manufacturing, storage, and clinical administration. An undesirable consequence of the instability of protein therapeutics is the formation of protein particles. MAbs can adsorb to interfaces and have the potential to undergo partial unfolding as well as to form viscoelastic gels. Further, the viscoelastic properties may be correlated with their aggregation potential. In this work, a passive microrheology technique was used to correlate the evolution of surface adsorption with the evolution of surface rheology of the National Institute of Standards and Technology (NIST) mAb reference material (NIST mAb) and interface-induced subvisible protein particle formation. The evolution of the surface adsorption and interfacial shear rheological properties of the NIST mAb was recorded in four formulation conditions: two different buffers (histidine vs phosphate-buffered saline) and two different pHs (6.0 and 7.6). Our results together demonstrate the existence of multiple stages for both surface adsorption and surface rheology, characterized by an induction period that appears to be purely viscous, followed by a sharp increase in protein molecules at the interface when the film rheology is viscoelastic and ultimately a slowdown in the surface adsorption that corresponds to the formation of solid-like or glassy films at the interface. When the transitions between the different stages occurred, they were dependent on the buffer/pH of the formulations. The onset of these transitions can also be correlated to the number of protein particles formed at the interface. Finally, the addition of polysorbate 80, an FDA-approved surfactant used to mitigate protein particle formation, led to the interface being surfactant-dominated, and the resulting interface remained purely viscous.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c03658DOI Listing

Publication Analysis

Top Keywords

nist mab
16
surface adsorption
16
evolution surface
12
passive microrheology
8
rheological properties
8
properties nist
8
protein particles
8
surface rheology
8
protein particle
8
particle formation
8

Similar Publications

Comprehensive host cell proteins profiling in biopharmaceuticals by a sensitivity enhanced mass spectrometry strategy using TMT-labeling and signal boosting.

Anal Chim Acta

January 2025

Hebei University, Baoding, 071002, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China. Electronic address:

Background: Host Cell Proteins (HCPs) are impurities expressed in host cells during the biopharmaceutical production process, whichmay compromise product quality and potentially leading to immunogenic reactions or other adverse effects. Mass spectrometry (MS)-based strategy is more and more considered as a promising method for HCPs analysis, since it is capable of simultaneously quantifying thousands of proteins in a single test. However, considering the large excess biopharmaceutical product protein present in the system and the extremely low abundance of HCPs, sensitive MS methods are urgently needed in HCPs analysis.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are a major class of biopharmaceuticals manufactured by well-established processes using Chinese Hamster Ovary (CHO) cells. Next-generation biomanufacturing using alternative hosts like Komagataella phaffii could improve the accessibility of these medicines, address broad societal goals for sustainability, and offer financial advantages for accelerated development of new products. Antibodies produced by K.

View Article and Find Full Text PDF

Currently, glycopeptide quantitation is mainly based on relative quantitation due to absolute quantitation requiring isotope-labeled or standard glycopeptides which may not be commercially available or are very costly and time consuming to synthesize. To address this grand challenge, coulometric mass spectrometry (CMS), based on the combination of electrochemistry (EC) and mass spectrometry (MS), was utilized to quantify electrochemically active glycopeptides without the need of using standard materials. In this study, we studied tyrosine-containing glycopeptides, NYIVGQPSS(β-GlcNAc)TGNL-OH and NYSVPSS(β-GlcNAc)TGNL-OH, and successfully quantified them directly with CMS with a discrepancy of less than 5% between the CMS measured amount and the theoretical amount.

View Article and Find Full Text PDF

An important consideration when expressing mAbs in Escherichiacoli.

Protein Expr Purif

August 2024

Institute for Bioscience and Biotechnology Research (IBBR), The University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD, 20850, USA; National Institute of Standards and Technology (NIST), 9600 Gudelsky Drive, Rockville, MD, 20850, USA; Biomolecular Labeling Laboratory, IBBR, 9600 Gudelsky Drive, Rockville, MD, 20850, USA. Electronic address:

Monoclonal antibodies (mAbs) are a driving force in the biopharmaceutical industry. Therapeutic mAbs are usually produced in mammalian cells, but there has been a push towards the use of alternative production hosts, such as Escherichia coli. When the genes encoding for a mAb heavy and light chains are codon-optimized for E.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) are often engineered at the sequence level for improved clinical performance yet are rarely evaluated prior to candidate selection for their "developability" characteristics, namely expression, which can necessitate additional resource investments to improve the manufacturing processes for problematic mAbs. A strong relationship between primary sequence and expression has emerged, with slight differences in amino acid sequence resulting in titers differing by up to an order of magnitude. Previous work on these "difficult-to-express" (DTE) mAbs has shown that these phenotypes are driven by post-translational bottlenecks in antibody folding, assembly, and secretion processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!