Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study proposes a procedure for substantive dimensionality estimation in the presence of wording effects, the inconsistent response to regular and reversed self-report items. The procedure developed consists of subtracting an approximate estimate of the wording effects variance from the sample correlation matrix and then estimating the substantive dimensionality on the residual correlation matrix. This is achieved by estimating a random intercept factor with unit loadings for all the regular and unrecoded reversed items. The accuracy of the procedure was evaluated through an extensive simulation study that manipulated nine relevant variables and employed the exploratory graph analysis (EGA) and parallel analysis (PA) retention methods. The results indicated that combining the proposed procedure with EGA or PA achieved high accuracy in estimating the substantive latent dimensionality, but that EGA was superior. Additionally, the present findings shed light on the complex ways that wording effects impact the dimensionality estimates when the response bias in the data is ignored. A tutorial on substantive dimensionality estimation with the R package EGAnet is offered, as well as practical guidelines for applied researchers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13428-024-02348-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!