Purpose: Despite the involvement of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase3 (PFKFB3) in the proliferation and metastasis of diverse tumor types, its biological functions and related molecular mechanisms in anaplastic thyroid carcinoma (ATC) remain largely unclear.
Methods: Datasets from the Gene Expression Omnibus, the Cancer Genome Atlas and immunohistochemistry (IHC) analyses were employed to measure the expression level of PFKFB3 in ATC. A series of assays were performed to analyze the role of PFKFB3 and its inhibitor KAN0438757 in ATC cell proliferation and migration. Furthermore, Western blotting (WB), IHC and luciferase reporter assay were conducted to investigate the potential mechanisms underlying the involvement of PFKFB3 and KAN0438757 in ATC. Additionally, we established a subcutaneous xenograft tumor model in nude mice to evaluate the in vivo tumor growth.
Results: PFKFB3 exhibited a significant increase in its expression level in ATC tissues. The overexpression of PFKFB3 resulted in the stimulation of ATC cell proliferation and migration. Furthermore, this overexpression was associated with the elevated expression levels of p-AKT (ser473), p-GSK3α/β (ser21/9), nuclear β-catenin, fibronectin1 (FN1), matrix metallopeptidase 9 (MMP-9) and cyclin D1. It also promoted the nuclear translocation of β-catenin and the transcription of downstream molecules. Conversely, contrasting results were observed with the downregulation or KAN0438757-mediated inhibition of PFKFB3 in ATC cells. The selective AKT inhibitor MK2206 was noted to reverse the increased expression of p-AKT (ser473) and p-GSK3α/β (ser21/9) induced by PFKFB3 overexpression. The level of lactate was increased in PFKFB3-overexpressing ATC cells, while the presence of KAN0438757 inhibited lactate production. Moreover, the simultaneous use of PFKFB3 downregulation and KAN0438757 was found to suppress subcutaneous tumor growth in vivo.
Conclusion: PFKFB3 can enhance ATC cell proliferation and migration via the WNT/β-catenin signaling pathway and plays a crucial role in the regulation of aerobic glycolysis in ATC cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12020-024-03725-3 | DOI Listing |
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Department of Rheumatology, Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
Tissue Eng Regen Med
January 2025
Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.
View Article and Find Full Text PDFMol Divers
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!