A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stress and strain relations of RC circular, square and rectangular columns externally wrapped with fiber ropes. | LitMetric

This study explores the potential use of low-cost natural fiber reinforced rope polymers (FRRP) to improve the compressive behavior of circular, square, and rectangular reinforced concrete (RC) specimens. A total of 42 specimens were tested under monotonic axial compression in three groups. Groups were formed to differentiate specimens with different cross-sectional shapes such as circular, square, and rectangular. The findings demonstrate that FRRP can effectively boost the compressive behavior of RC columns. Circular specimens with three-layer hemp FRRP exhibited a 200% increase in compressive strength and a 270% improvement in corresponding strain. Cotton FRRP provided a 117% boost in compressive strength and a 233% enhancement in strain. In square specimens, three-layer hemp FRRP resulted in a 110% rise in compressive strength and a 186% increase in strain, while cotton confinement yielded improvements of 95% and 144%, respectively. For the square and rectangular specimens, the improvement in the compressive behavior was reduced compared to the circular specimens because of stress concentrations near corners. Moreover, the study showed that the hemp FRRP confinement outperformed the cotton confinement. The investigation also revealed that the existing analytical models were inadequate in predicting the mechanical properties of RC confined with natural FRRP. Therefore, the study introduces novel equations to predict the compressive strength and corresponding strain for both hemp and cotton confined concrete in various cross-sectional types. These proposed equations exhibit a good level of accuracy in predicting the compressive strength and corresponding strain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879512PMC
http://dx.doi.org/10.1038/s41598-024-54586-9DOI Listing

Publication Analysis

Top Keywords

compressive strength
20
square rectangular
16
circular square
12
compressive behavior
12
hemp frrp
12
corresponding strain
12
compressive
8
boost compressive
8
circular specimens
8
specimens three-layer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!