Efficacy of 3D-printed eye model to enhance retinoscopy skills.

Sci Rep

Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.

Published: February 2024

We conducted a prospective study to evaluate the efficacy of simulation-based education using a three-dimensional (3D)-printed schematic eye model in improving the retinoscopy refraction skills of medical students. A schematic eye model was printed using a fused deposition modeling-based 3D printer. Twenty medical students randomized into 3D (n = 10) and control (n = 10) groups received a 1-h lecture on the principles and methods of manifest refraction and were shown how to use the retinoscope and sciascope bars. The 3D group additionally attended a tutorial on the schematic eye. Both groups performed refractive examinations on four eyes of volunteer patients, and the results were recorded as a baseline. Instructor feedback and refraction practice was provided with the 3D group or with control group. To account for subject fatigue, patients spent no more than 8 min on the examination. After a 1-h break to allow for fatigue and familiarity, refraction tests were repeated on four randomly selected eyes of patients. Students' refraction readings were compared with the autorefractor values using a spherical equivalent value and blur strength. All participants measured the time required to complete the refraction test and reported their subjective confidence in the results of each refraction test. Refractive errors before and after training did not differ between the control and 3D groups, with a significant improvement in errors observed in both groups (p = 0.005 and 0.008, respectively). The time to complete refraction before and after training did not differ between the two groups, both of which showed a significant reduction in time (p = 0.005 and 0.028, respectively). Pre- and post-training confidence scores for the accuracy of each refraction on a 10-point Likert scale were not significantly different. However, when comparing score changes between pre- and post-training, only the control group showed a significant increase in confidence (p = 0.005). Tests for the non-inferiority of refractive errors after training indicated that the 3D group was non-inferior to the control group. In conclusion, training in retinoscopy refraction skills using a 3D-printed eye model resulted in significant improvement in accuracy and speed compared to practice with real patients. Except for better confidence in the control group, schematic eye model training was not inferior to practice with real patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879193PMC
http://dx.doi.org/10.1038/s41598-024-53321-8DOI Listing

Publication Analysis

Top Keywords

eye model
20
schematic eye
16
control group
16
refraction
10
3d-printed eye
8
retinoscopy refraction
8
refraction skills
8
medical students
8
complete refraction
8
refraction test
8

Similar Publications

Purpose: This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose.

View Article and Find Full Text PDF

Polarization is a property of light that describes the oscillation of the electric field vector. Polarized light can be detected by many invertebrate animals, and this visual channel is widely used in nature. Insects rely on light polarization for various purposes, such as water detection, improving contrast, breaking camouflage, navigation, and signaling during mating.

View Article and Find Full Text PDF

We hypothesized that a strategy employing tissue-specific endothelial cells (EC) might facilitate the identification of tissue- or organ-specific vascular functions of ubiquitous metabolites. An unbiased approach was employed to identify water-soluble small molecules with mitogenic activity on choroidal EC. We identified adenosine diphosphate (ADP) as a candidate, following biochemical purification from mouse EL4 lymphoma extracts.

View Article and Find Full Text PDF

Given close relationships between ocular structure and ophthalmic disease, ocular biometry measurements (including axial length, lens thickness, anterior chamber depth, and keratometry values) may be leveraged as features in the prediction of eye diseases. However, ocular biometry measurements are often stored as PDFs rather than as structured data in electronic health records. Thus, time-consuming and laborious manual data entry is required for using biometry data as a disease predictor.

View Article and Find Full Text PDF

3D-printed devices for multiplexed semi-quantitative competitive lateral flow immunoassays.

Anal Methods

January 2025

Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

Lateral flow immunoassays (LFIAs) are widely used for the simple and rapid detection of various targets at the point of need. However, LFIAs enabling the simultaneous detection of multiple analytes and the possibility for naked-eye semi-quantitative analysis are facing various challenges, including the requirement of large sample volumes, low efficiency, and accuracy. This is particularly the case for the competitive immunoassay format targeting the detection of low molecular weight compounds, such as, for example, drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!