Elastic properties and tensile strength of 2D TiCT MXene monolayers.

Nat Commun

Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, P. R. China.

Published: February 2024

Two-dimensional (2D) transition metal nitrides and carbides (MXenes), represented by TiCT, have broad applications in flexible electronics, electromechanical devices, and structural membranes due to their unique physical and chemical properties. Despite the Young's modulus of 2D TiCT has been theoretically predicted to be 0.502 TPa, which has not been experimentally confirmed so far due to the measurement is extremely restricted. Here, by optimizing the sample preparation, cutting, and transfer protocols, we perform the direct in-situ tensile tests on monolayer TiCT nanosheets using nanomechanical push-to-pull equipment under a scanning electron microscope. The effective Young's modulus is 0.484 ± 0.013 TPa, which is much closer to the theoretical value of 0.502 TPa than the previously reported 0.33 TPa by the disputed nanoindentation method, and the measured elastic stiffness is ~948 N/m. Moreover, during the process of tensile loading, the monolayer TiCT shows an average elastic strain of ~3.2% and a tensile strength as large as ~15.4 GPa. This work corrects the previous reports by nanoindentation method and demonstrates that the TiCT indeed keeps immense potential for broad range of applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879101PMC
http://dx.doi.org/10.1038/s41467-024-45657-6DOI Listing

Publication Analysis

Top Keywords

tensile strength
8
young's modulus
8
0502 tpa
8
monolayer tict
8
nanoindentation method
8
tict
6
elastic properties
4
tensile
4
properties tensile
4
strength tict
4

Similar Publications

High-performance supercapacitors based on coarse nanofiber bundle and ordered network hydrogels.

Int J Biol Macromol

December 2024

Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.

Most of the developed flexible hydrogel supercapacitors struggle to maintain their electrochemical stability and structural integrity under tensile strain. Therefore, developing a flexible supercapacitor with excellent mechanical properties and stable electrochemical performance under different strains remains a challenge. Based on the previous cartilage-like structure, we designed a new coarse nanofiber bundle and ordered network.

View Article and Find Full Text PDF

Properties of gelatin-zein films prepared by blending method and layer-by-layer self-assembly method.

Int J Biol Macromol

December 2024

School of Food and Bioengineering, Xihua University, Food Microbiology Key Laboratory of Sichuan Province, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chengdu, Sichuan Province 611130, China. Electronic address:

In this study, physicochemical and structural properties of gelatin-zein blending films and bilayer films prepared through blending and layer-by-layer self-assembly method under TGase crosslinking were systematically compared. The ratios of gelatin to zein examined were 2:1, 1:1, and 1:2. Results showed that the tensile strength of both blending films and bilayer films was the highest when the ratio of gelatin to zein was 2:1, which was 4.

View Article and Find Full Text PDF

This study investigates the effect of pre-deformation by cold rolling after solution annealing on the microstructure and properties of the fine-grained Al-Li alloy 2A97. Electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize grain boundaries, dislocations, precipitates and calculate their contribution to strength. It is found that the changes in precipitation behavior predominantly account for the enhanced tensile properties observed in the deformed alloys, where yield and tensile strengths are increased by 85 MPa and 63 MPa, respectively.

View Article and Find Full Text PDF

3D printing of continuous cotton thread reinforced poly (lactic acid).

Sci Rep

December 2024

Key Laboratory of Special Engineering Equipment Design and Intelligent Driving Technology, Guilin University of Aerospace Technology, Guilin, 541004, China.

This paper purposed to prepare poly (lactic acid)/continuous cotton thread (PLA /CCT) filaments by using prepreg method, and investigated the properties of PLA/CCT filament and their 3D printed composites. Firstly, a prepreg device was home-made to immerse CCT with PLA melts. The effects of the dragging speed and tensioning equipment on the quality of PLA/CCT filament was investigated.

View Article and Find Full Text PDF

The design of drill pipe joint thread with unequal taper is proposed to investigate the fracture failure of the API NC38 used in the drill pipe joint of the SU36-8-4H2 well. The effect of changes in thread taper on the stress distribution and mechanical properties of drill pipe joints is analyzed and compared with the API standard thread to determine the optimal thread structure with unequal taper. The results reveal highly concentrated stress at the last engaged thread root of API NC38 single-shoulder thread (SUT) may cause early yield failure of the joint threads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!