Purpose: Non-invasive, beat-to-beat variations in physiological indices provide an opportunity for more accessible assessment of autonomic dysfunction. The potential association between the changes in these parameters and arterial stiffness in hypertension remains poorly understood. This systematic review aims to investigate the association between non-invasive indicators of autonomic function based on beat-to-beat cardiovascular signals with arterial stiffness in individuals with hypertension.

Methods: Four electronic databases were searched from inception to June 2022. Studies that investigated non-invasive parameters of arterial stiffness and autonomic function using beat-to-beat cardiovascular signals over a period of > 5min were included. Study quality was assessed using the STROBE criteria. Two authors screened the titles, abstracts, and full texts independently.

Results: Nineteen studies met the inclusion criteria. A comprehensive overview of experimental design for assessing autonomic function in terms of baroreflex sensitivity and beat-to-beat cardiovascular variabilities, as well as arterial stiffness, was presented. Alterations in non-invasive indicators of autonomic function, which included baroreflex sensitivity, beat-to-beat cardiovascular variabilities and hemodynamic changes in response to autonomic challenges, as well as arterial stiffness, were identified in individuals with hypertension. A mixed result was found in terms of the association between non-invasive quantitative autonomic indices and arterial stiffness in hypertensive individuals. Nine out of 12 studies which quantified baroreflex sensitivity revealed a significant association with arterial stiffness parameters. Three studies estimated beat-to-beat heart rate variability and only one study reported a significant relationship with arterial stiffness indices. Three out of five studies which studied beat-to-beat blood pressure variability showed a significant association with arterial structural changes. One study revealed that hemodynamic changes in response to autonomic challenges were significantly correlated with arterial stiffness parameters.

Conclusions: The current review demonstrated alteration in autonomic function, which encompasses both the sympathetic and parasympathetic modulation of sinus node function and vasomotor tone (derived from beat-to-beat cardiovascular signals) in hypertension, and a significant association between some of these parameters with arterial stiffness. By employing non-invasive measurements to monitor changes in autonomic function and arterial remodeling in individuals with hypertension, we would be able to enhance our ability to identify individuals at high risk of cardiovascular disease. Understanding the intricate relationships among these cardiovascular variability measures and arterial stiffness could contribute toward better individualized treatment for hypertension in the future.

Systematic Review Registration: PROSPERO ID: CRD42022336703. Date of registration: 12/06/2022.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880234PMC
http://dx.doi.org/10.1186/s12938-024-01202-6DOI Listing

Publication Analysis

Top Keywords

arterial stiffness
48
autonomic function
28
beat-to-beat cardiovascular
24
arterial
14
stiffness
12
parameters arterial
12
cardiovascular signals
12
baroreflex sensitivity
12
autonomic
11
beat-to-beat
9

Similar Publications

Foods rich in polyphenols have beneficial effects on health. This study aimed to examine the impact of dark chocolate on endurance runners' arterial function. Forty-six male amateur runners, aged 25-55, participated.

View Article and Find Full Text PDF

Trimethylamine -oxide (TMAO), a gut microbiome-derived metabolite, participates in the atherogenesis and vascular stiffening that is closely linked with cardiovascular (CV) complications and related deaths in individuals with kidney failure undergoing peritoneal dialysis (PD) therapy. In these patients, arterial stiffness (AS) is also an indicator of adverse CV outcomes. This study assessed the correlation between serum TMAO concentration quantified with high-performance liquid chromatography and mass spectrometry and central AS measured by carotid-femoral pulse wave velocity (cfPWV) in patients with chronic PD.

View Article and Find Full Text PDF

This work presents strong evidence supporting the use of decellularized human iliac arteries combined with adipose tissue-derived stem cells (hASCs) as a promising alternative for vascular tissue engineering, opening the path to future treatments for peripheral artery disease (PAD). PAD is a progressive condition with high rates of amputation and mortality due to ischemic damage and limited graft options. Traditional synthetic grafts often fail due to poor integration, while autologous grafts may be unsuitable for patients with compromised vascular health.

View Article and Find Full Text PDF

Background: Adults with congenital heart disease (ACHD) can face a lifelong risk of premature cardiovascular events. Endothelial dysfunction and arterial stiffness may be some of the key mechanisms involved. Early identification of endothelial damage in ACHD could be crucial to mitigate the adverse events.

View Article and Find Full Text PDF

Observational studies and clinical trials indicate a link between arterial stiffness (AS) and sarcopenia (SAR), yet the causal relationship between these remains unclear. The study aims to investigate the causal connection from AS to SAR by Mendelian randomization (MR). We analyzed Genome-Wide Association Studies data for AS indicators: pulse wave arterial stiffness index (PWASI) and pulse wave peak-to-peak time (PPT), and SAR indicators: low hand grip strength (LHGS), usual walking pace (UWP), moderate-to-vigorous physical activity levels (MVPA), and walk or cycle unassisted for 10 minutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!