Background: Cinobufagin (CBG), a key bioactive component in cinobufacini, exhibits antitumor properties. This study explores CBG's impact on triple-negative breast cancer (TNBC) metastasis and elucidates the underpinning mechanism.

Methods: Murine xenograft and orthotopic metastatic TNBC models were generated and treated with CBG. The burden of metastatic tumor in the mouse lung, the epithelial to mesenchymal transition (EMT) markers, and macrophage polarization markers within the tumors were examined. The phenotype of tumor-associated macrophages (TAMs) and mobility of TNBCs in vitro in a macrophage-TNBC cell coculture system were analyzed. Physiological targets of CBG were identified by bioinformatics analyses.

Results: CBG treatment significantly alleviated lung tumor burden and EMT activity. It triggered an M2-to-M1 shift in TAMs, resulting in decreased TNBC cell migration, invasion, and EMT in vitro. CBG upregulated membrane metalloendopeptidase (MME) expression, suppressing FAK and STAT3 phosphorylation. Silencing of MME, either in mice or TAMs, counteracted CBG effects, reinstating M2 TAM predominance and enhancing TNBC cell metastasis. Cotreatment with Defactinib, a FAK antagonist, reversed M2 TAM polarization and TNBC cell metastasis. Notably, MME silencing in TNBC cells had no impact on CBG-suppressed malignant properties, indicating MME's indirect involvement in TNBC cell behavior through TAM mediation.

Conclusion: This study unveils CBG's ability to enhance MME expression, deactivate FAK/STAT3 signaling, and inhibit TNBC metastasis by suppressing M2-skewed macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clbc.2024.01.014DOI Listing

Publication Analysis

Top Keywords

tnbc cell
16
triple-negative breast
8
breast cancer
8
fak/stat3 signaling
8
tnbc
8
tnbc metastasis
8
mme expression
8
cell metastasis
8
cbg
6
metastasis
5

Similar Publications

Epidermal growth factor receptor (EGFR) is a highly expressed driver of many cancers, yet the utility of EGFR inhibitors is limited to cancers that harbor sensitizing mutations in the EGFR gene due to dose limiting toxicities. Rather than conventionally blocking the kinase activity of EGFR, we sought to reduce its transcription as an alternative approach to broaden the therapeutic window for EGFR inhibitors targeting wildtype or mutant EGFR. We found that YES1 is highly expressed in triple negative breast cancer (TNBC) and drives cell growth by elevating EGFR levels.

View Article and Find Full Text PDF

The efficacy of immunotherapy in triple-negative breast cancer (TNBC) is significantly hindered by its low immunogenicity and immunosuppressive tumor microenvironment. Non-invasive photodynamic therapy (PDT) is increasingly recognized as a potential immunotherapeutic stimulant in the treatment of TNBC. However, photodynamic immunotherapy is constrained by tumor hypoxia and excessive inflammation suppression during the course of treatment.

View Article and Find Full Text PDF

The impact of high heterogeneity of cancer-associated fibroblasts (CAFs) on triple-negative breast cancer (TNBC) immunotherapy response has not been fully elucidated, restricting progress in precision immuno-oncology. We integrated single-cell transcriptomic data from 18 TNBC patients and analyzed fibroblast subpopulations. Extracellular matrix CAFs (ecmCAFs) were identified as a fibroblast subpopulation with distinct ECM-associated characteristics.

View Article and Find Full Text PDF

Introduction: Triple-negative breast cancer (TNBC) is the most challenging subtype of breast cancer to treat. While previous studies have demonstrated that ginsenoside Rh2 induces apoptosis in TNBC cells, the specific molecular targets and underlying mechanisms remain poorly understood. This study aims to uncover the molecular mechanisms through which ginsenoside Rh2 regulates apoptosis and proliferation in TNBC, offering new insights into its therapeutic potential.

View Article and Find Full Text PDF

Background: Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!