Microbial glycosyltransferases efficiently synthesize glucosides and have garnered increasing interest. However, limited regioselectivity has impeded their broad application, particularly in the pharmaceutical industry. In this study, the UDP-glycosyltransferase YjiC from Bacillus licheniformis (BlYjiC) was engineered to achieve the bidirectional regioselective glycosylation of tyrosol and its derivatives. Initially, site-directed saturation mutagenesis was performed on two newly identified substrate-binding cavities in the acceptor pocket of BlYjiC to provide a comprehensive blueprint of the interplay between mutations and function (mutability landscape). Iterative saturation mutagenesis was performed, guided by the mutability landscape. Two highly regioselective mutants M6 (M112L/I325Y/L70R/Q136E/I67E/M77R) and M2' (M112D/I62L) were generated, exhibiting >99 % regioselectivity toward the alcoholic and phenolic hydroxyl of tyrosol, respectively, compared with the wild-type (product mixture: 51:49 %). Both mutants exhibited excellent regioselectivity toward several dihydroxy phenolic substrates, offering valuable biocatalysts for the regioselective synthesis of glucosides. Their application was confirmed in a short synthesis of salidroside (3.6 g/L) and icariside D2 (2.4 g/L), which exhibited near-perfect regioselectivity. This study provides valuable insights into future protein engineering of similar enzymes and opens new avenues for their practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.130229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!