The optimal utilization of biomass relies heavily on the specific material and individual needs. Cereal biomass by-products can potentially be employed in thermochemical processes such as pyrolysis and gasification. To compare biomass sources, ultimate analysis, biochar potential, proximate analysis, thermal gravimetric analysis, price per megajoule generated heat, surface texture, and availability are used. A global survey of biomass wastes and opportunities for heat generation is presented in the current article. Here, nine different cereal-based agricultural waste products (barley, wheat, millet, oats, rice, rye straw, sorghum straw/stalk, and maize cob) are studied. Cereal wastes are compared based on calorific value, water content, volatile matter, ash content and ash chemical composition, bulk density, charring properties, availability, and transportation. According to the estimate, 156 million metric tonnes per year, or 6% of India's total emissions, could be eliminated by rice husk alone. Wheat straws, on the other hand, can cut emissions by 2%. Additionally, processing these nine feedstocks might result in the production of 40 GW of electrical energy, which would increase the installed capacity of India's national electric grid by 9%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141420DOI Listing

Publication Analysis

Top Keywords

cereal biomass
8
biomass by-products
8
analysis
5
biomass
5
pyrolysis kinetics
4
kinetics potential
4
potential utilization
4
utilization analysis
4
analysis cereal
4
by-products experimental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!