MCPNET: Development of an interpretable deep learning model based on multiple conformations of the compound for predicting developmental toxicity.

Comput Biol Med

College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, Zhejiang, 310058, China. Electronic address:

Published: March 2024

The development of deep learning models for predicting toxicological endpoints has shown great promise, but one of the challenges in the field is the accuracy and interpretability of these models. The bioactive conformation of a compound plays a critical role for it to bind in the target. It is a big issue to figure out the bioactive conformation in deep learning without the co-crystal structure or highly precise molecular simulations. In this study, we developed a deep learning framework of Multi-Conformation Point Network (MCPNET) to construct classification and regression models, respectively, based on electrostatic potential distributions on vdW surfaces around multiple conformations of the compound using a dataset of compounds with developmental toxicity in zebrafish embryo. MCPNET applied 3D multi-conformational surface point cloud to extract the molecular features for model training, which may be critical for capturing the structural diversity of compounds. The models achieved an accuracy of 85 % on the classification task and R of 0.66 on the regression task, outperforming traditional machine learning models and other deep learning models. The key feature of our model is its interpretability with the component visualization to identify the factors contributing to the prediction and to understand the compound action mechanism. MCPNET may predict the conformation quietly close to the bioactive conformation of a compound by attention-based multi-conformation pooling mechanism. Our results demonstrated the potential of deep learning based on 3D molecular representations in accurately predicting developmental toxicity. The source code is publicly available at https://github.com/Superlit-CC/MCPNET.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108037DOI Listing

Publication Analysis

Top Keywords

deep learning
24
developmental toxicity
12
learning models
12
bioactive conformation
12
multiple conformations
8
conformations compound
8
predicting developmental
8
conformation compound
8
learning
7
deep
6

Similar Publications

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.

View Article and Find Full Text PDF

Central to the development of universal learning systems is the ability to solve multiple tasks without retraining from scratch when new data arrives. This is crucial because each task requires significant training time. Addressing the problem of continual learning necessitates various methods due to the complexity of the problem space.

View Article and Find Full Text PDF

Accurate classification of logos is a challenging task in image recognition due to variations in logo size, orientation, and background complexity. Deep learning models, such as VGG16, have demonstrated promising results in handling such tasks. However, their performance is highly dependent on optimal hyperparameter settings, whose fine-tuning is both labor-intensive and time-consuming.

View Article and Find Full Text PDF

Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.

View Article and Find Full Text PDF

A two-level resolution neural network with enhanced interpretability for freeway traffic forecasting.

Sci Rep

December 2024

Department of Civil Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Deep learning models are widely used for traffic forecasting on freeways due to their ability to learn complex temporal and spatial relationships. In particular, graph neural networks, which integrate graph theory into deep learning, have become popular for modeling traffic sensor networks. However, traditional graph convolutional networks (GCNs) face limitations in capturing long-range spatial correlations, which can hinder accurate long-term predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!