Dosage-effect of selenium supplementation on blood glucose and oxidative stress in type 2 diabetes mellitus and normal mice.

J Trace Elem Med Biol

School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China; Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, PR China. Electronic address:

Published: May 2024

Background: The effectiveness of selenium (Se) supplementation on glycemic control is disparate.

Objective: This study aims to evaluate the effects of different dosages of Se diets on the blood glucose in type 2 diabetes mellitus (T2DM, db/db) and normal (db/m) mice.

Methods: The db/db and db/m mice were fed with different dosages of Se supplemented diets (0, 0.1, 0.3, 0.9, 2.7 mg/kg) for 12 weeks, respectively. Se concentrations of tissues, physical and biochemical characteristics, oxidative stress indexes and gene expression related to glucose, lipid metabolism and Se transporters of liver were detected.

Results: The Se concentrations in tissues were related to the dosages of Se supplementation in db/db (blood: slope=11.69, r = 0.924; skeletal muscle: slope=0.36, r = 0.505; liver: slope=22.12, r = 0.828; kidney: slope=11.81, r = 0.736) and db/m mice (blood: slope=19.89, r = 0.876; skeletal muscle: slope=2.80, r = 0.883; liver: slope=44.75, r = 0.717; kidney: slope=60.15, r = 0.960). Compared with Se2.7 group, the fasting blood glucose (FBG) levels of Se0.1 and Se0.3 group were decreased at week3 in db/db mice. Compared with control (Se0) group, the FBG levels of Se2.7 group were increased from week6 to week12 in db/m mice. The oral glucose tolerance test (OGTT) showed that the area under the curve (AUC) of Se0.3 group was lower than that of Se0.9 and Se2.7 group in db/m mice. Furthermore, compared with control group, the malondialdehyde (MDA) level in skeletal muscle of Se0.1 group was decreased, while that of Se2.7 group was increased in db/db mice; the glutathione peroxidase (GPx) activity in skeletal muscle of Se0.3, Se0.9 and Se2.7 group was increased both in db/db and db/m mice. For db/db mice, glucose-6-phosphatase catalytic (G6pc) expression of other groups were lower and fatty acid synthase (Fasn) expression of Se0.9 group were lower compared with Se0.3 group. For db/m mice, compared with Se0.3 group, (peroxisome proliferative activated receptor gamma coactivator 1 alpha) Pgc-1α expression of control and Se0.9 group were higher; (phosphoenolpyruvate carboxykinase 1) Pck1 expression of Se0.1, Se0.9, and Se2.7 group were higher.

Conclusion: Low dosages (0.1 and 0.3 mg/kg) of Se supplementation exerted beneficial effects on FBG levels and glucose tolerance through regulating hepatic glycolysis and gluconeogenesis and inhibit the oxidative stress while high dosages of Se (0.9 and 2.7 mg/kg) supplementation enhanced FBG levels, impaired glucose tolerance and aggravate oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2024.127410DOI Listing

Publication Analysis

Top Keywords

db/m mice
24
se27 group
24
oxidative stress
16
skeletal muscle
16
fbg levels
16
se03 group
16
group
15
blood glucose
12
db/db mice
12
mice compared
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!