polysaccharides (HSPs) have attracted extensive attention recently for their biological activity and physicochemical property. This research investigated the extraction, structural characterization, and prebiotic activity of three different HSPs (HSP40-0, HSP60-0, and HSP80-0) to reveal the scientific support for the high-value utilization of HSPs were heteropolysaccharide with diverse structures and surface morphologies. Comprehensive analysis was conducted through 16S rRNA gene sequencing and metabolite profiling techniques, and results showed that HSPs had different potentials to regulate the gut microbiota due to their different structures; for instance, both HSP40-0 and HSP80-0 could notably increase the relative abundance of Bacteroidota, whereas HSP60-0 could increase the relative abundance of . In addition, HSPs upregulated beneficial differential metabolites, especially short-chain fatty acids (SCFAs). Fermentation products containing these metabolites exhibited anti-inflammatory effects on LPS-treated Caco-2 cells. This study will provide reference for exploring the relationship between the natural polysaccharide structure and the prebiotic activity and widen the application of .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.3c08658 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!