Wound infection and tumor recurrence are the two main threats to cancer patients after surgery. Although researchers have developed new treatment systems to address the two significant challenges simultaneously, the potential side effects of the heavy-metal-ion-based treatment systems still severely limit their widespread application in therapy. In addition, the wounds from tumor removal compared with general operative wounds are more complex. The tumor wounds mainly exhibit more hemorrhage, larger trauma area, greater vulnerability to bacterial infection, and residual tumor cells. Therefore, a multifunctional treatment platform is urgently needed to integrate rapid hemostasis, sterilization, wound healing promotion, and antitumor functions. In this work, nanodiamonds (NDs), a material that has been well proven to have excellent biocompatibility, are added into a solution of acrylic-grafted chitosan (CEC) and oxidized hyaluronic acid (OHA) to construct a multifunctional treatment platform (CEC-OHA-NDs). The hydrogels exhibit rapid hemostasis, a wound-healing-promoting effect, excellent self-healing, and injectable abilities. Moreover, CEC-OHA-NDs can effectively eliminate bacteria and inhibit tumor proliferation by the warm photothermal effect of NDs under tissue-penetrable near-infrared laser irradiation (NIR) without cytotoxicity. Consequently, we adopt a simple and convenient strategy to construct a multifunctional treatment platform using carbon-based nanomaterials with excellent biocompatibility to promote the healing of infected wounds and to inhibit tumor cell proliferation simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c13464 | DOI Listing |
Ann Med
December 2025
Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China.
Background: Quaking (QKI) is a member of the signal transduction and activators of RNA (STAR) family, performing a crucial multifunctional regulatory role in alternative splicing, mRNA precursor processing, mRNA transport and localization, mRNA stabilization, and translation during tumour progression. Abnormal QKI expression or fusion mutations lead to aberrant RNA and protein expression, thereby promoting tumour progression. However, in many types of tumour, QKI played a role as tumour suppressor, the regulatory role of QKI in tumour progression remains ambiguous.
View Article and Find Full Text PDFBiomol Ther (Seoul)
December 2024
Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.
In cancer cells, survival genes contribute to uncontrolled growth and the survival of malignant cells, leading to tumor progression. Neurons are post-mitotic cells, fully differentiated and non-dividing after neurogenesis and survival genes are essential for cellular longevity and proper functioning of the nervous system. This review explores recent research findings regarding the role of survival genes, particularly DX2, in degenerative neuronal tissue cells and cancer cells.
View Article and Find Full Text PDFNanoscale
December 2024
School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 71000, China.
Infectious bacteria pose an increasing threat to public health, and hospital-acquired bacterial infections remain a significant challenge for wound healing. In this study, we developed an advanced nanoplatform utilizing copper doped magnetic vortex nanoring coated with polydopamine (Cu-MVNp) based nanotherapeutics for bacterial infection tri-therapy. This multifunctional nanoplatform exhibits remarkable dual-stimulus thermogenic capabilities and Fenton-like peroxidase activity.
View Article and Find Full Text PDFMol Cancer
December 2024
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy.
View Article and Find Full Text PDFMicrob Cell Fact
December 2024
Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
This comprehensive review explores the emergence of titanium dioxide nanoparticles (TiO-NPs) as versatile nanomaterials, particularly exploring their biogenic synthesis methods through different biological entities such as plants, bacteria, fungi, viruses, and algae. These biological entities provide eco-friendly, cost-effective, biocompatible, and rapid methods for TiO-NP synthesis to overcome the disadvantages of traditional approaches. TiO-NPs have distinctive properties, including high surface area, stability, UV protection, and photocatalytic activity, which enable diverse applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!