Raising the Asymmetric Catalytic Efficiency of Chiral Covalent Organic Frameworks by Tuning the Pore Environment.

ACS Appl Mater Interfaces

GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China.

Published: February 2024

Chiral covalent organic frameworks (COFs) hold considerable promise in the realm of heterogeneous asymmetric catalysis. However, fine-tuning the pore environment to enhance both the activity and stereoselectivity of chiral COFs in such applications remains a formidable challenge. In this study, we have successfully designed and synthesized a series of clover-shaped, hydrazone-linked chiral COFs, each with a varying number of accessible chiral pyrrolidine catalytic sites. Remarkably, the catalytic efficiencies of these COFs in the asymmetric aldol reaction between cyclohexanone and 4-nitrobenzaldehyde correlate well with the number of accessible pyrrolidine sites within the frameworks. The COF featuring nearly one pyrrolidine moiety at each nodal point demonstrated excellent reaction yields and enantiomeric excess (ee) values, reaching up to 97 and 83%, respectively. The findings not only underscore the profound impact of a deliberately controlled chiral pore environment on the catalytic efficiencies of COFs but also offer a new perspective for the design and synthesis of advanced chiral COFs for efficient asymmetric catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c17048DOI Listing

Publication Analysis

Top Keywords

pore environment
12
chiral cofs
12
chiral covalent
8
covalent organic
8
organic frameworks
8
asymmetric catalysis
8
number accessible
8
catalytic efficiencies
8
efficiencies cofs
8
chiral
7

Similar Publications

In this study, the novel activated carbon developed from fruit stone, through hydrothermal treatment at low pressure and temperature, was utilized for the removal of 4-nitrophenol, 4-chlorophenol, and phenol from water. The activated carbon produced (AC-HTPEFS) showed a well-developed porosity with a surface area of 569 m g and a total pore volume of 0.342 cm g.

View Article and Find Full Text PDF

(Mtb) is the causative agent of tuberculosis, the world's deadliest infectious disease. Mtb uses a variety of mechanisms to evade the human host's defenses and survive intracellularly. Mtb's oxidative stress response enables Mtb to survive within activated macrophages, an environment with reactive oxygen species and low pH.

View Article and Find Full Text PDF

Porous Carbon Fabricated by Microbial Pretreatment of Brewer's Grain for the Improvement of Toluene Adsorption Performance.

Molecules

December 2024

Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China.

Porous activated carbons (AC-AN and AC-AO) for toluene adsorption were prepared starting from brewer's grain biomass pretreated with microorganisms ( van Tieghem for AC-AN and RIB40 for AC-AO). The structures and chemical properties of the three activated carbon materials (AC-AN, AC-AO, and AC that was not pretreated with microorganisms) were characterized by N adsorption-desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The adsorption behavior of the three activated carbons for toluene was studied and correlated with the physical and chemical properties of these materials.

View Article and Find Full Text PDF

Preparation and Properties of Sulfur-Modified Alite Calcium Sulfoaluminate Cement.

Materials (Basel)

December 2024

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.

Alite calcium sulfoaluminate (ACSA) cement is an innovative and environmentally friendly cement compared to ordinary Portland cement (OPC). The synthesis and hydration of ACSA clinkers doped with gradient sulfur were investigated. The clinker compositions and hydrated pastes were characterized by X-ray diffraction (XRD), isothermal calorimetry, mercury intrusion porosimetry (MIP), and scanning electron microscopy (SEM) to analyze its mineral contents, hydration products, heat release, pore structure, and microstructure.

View Article and Find Full Text PDF

Mitochondrial carriers transport organic acids, amino acids, nucleotides and cofactors across the mitochondrial inner membrane. These transporters consist of a three-fold symmetric bundle of six transmembrane α-helices that encircle a pore with a central substrate binding site, whose alternating access is controlled by a cytoplasmic and a matrix gate (C- and M-gates). The C- and M-gates close by forming two different salt-bridge networks involving the conserved motifs [YF][DE]XX[KR] on the even-numbered and PX[DE]XX[KR] on the odd-numbered transmembrane α-helices, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!