A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Motion correction of 3D dynamic contrast-enhanced ultrasound imaging without anatomical B-Mode images: Pilot evaluation in eight patients. | LitMetric

Background: Dynamic contrast-enhanced ultrasound (DCE-US) is highly susceptible to motion artifacts arising from patient movement, respiration, and operator handling and experience. Motion artifacts can be especially problematic in the context of perfusion quantification. In conventional 2D DCE-US, motion correction (MC) algorithms take advantage of accompanying side-by-side anatomical B-Mode images that contain time-stable features. However, current commercial models of 3D DCE-US do not provide side-by-side B-Mode images, which makes MC challenging.

Purpose: This work introduces a novel MC algorithm for 3D DCE-US and assesses its efficacy when handling clinical data sets.

Methods: In brief, the algorithm uses a pyramidal approach whereby short temporal windows consisting of three consecutive frames are created to perform local registrations, which are then registered to a master reference derived from a weighted average of all frames. We applied the algorithm to imaging studies from eight patients with metastatic lesions in the liver and assessed improvements in original versus motion corrected 3D DCE-US cine using: (i) frame-to-frame volumetric overlap of segmented lesions, (ii) normalized correlation coefficient (NCC) between frames (similarity analysis), and (iii) sum of squared errors (SSE), root-mean-squared error (RMSE), and r-squared (R) quality-of-fit from fitted time-intensity curves (TIC) extracted from a segmented lesion.

Results: We noted improvements in frame-to-frame lesion overlap across all patients, from 68% ± 13% without correction to 83% ± 3% with MC (p = 0.023). Frame-to-frame similarity as assessed by NCC also improved on two different sets of time points from 0.694 ± 0.057 (original cine) to 0.862 ± 0.049 (corresponding MC cine) and 0.723 ± 0.066 to 0.886 ± 0.036 (p ≤ 0.001 for both). TIC analysis displayed a significant decrease in RMSE (p = 0.018) and a significant increase in R goodness-of-fit (p = 0.029) for the patient cohort.

Conclusions: Overall, results suggest decreases in 3D DCE-US motion after applying the proposed algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.16995DOI Listing

Publication Analysis

Top Keywords

b-mode images
12
motion correction
8
dynamic contrast-enhanced
8
contrast-enhanced ultrasound
8
anatomical b-mode
8
motion artifacts
8
dce-us motion
8
motion
6
dce-us
6
correction dynamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!