With the emergence of gene therapy utilizing viral vectors, the potential risks associated with these vectors have prompted increased attention toward non-viral alternatives. DNA nanotechnology enables the assembly of specific oligonucleotide chains into nanostructures possessing defined spatial configurations. Due to their inherent characteristics, DNA nanostructures possess natural advantages as carriers for regulating gene expression in a non-viral manner. Cholesterol modification can convert DNA nanostructures from hydrophilic materials to amphiphilic materials, thereby extending their systemic circulation time. In this study, the high-dimensional design and cholesterol modification are shown to prolong the systemic circulation half-life of DNA nanostructures in mice. Specifically, the tetrahedron structure modified with three cholesterol molecules (TDN-3Chol) exhibit excellent circulation time and demonstrate a preference for renal uptake. The unique characteristics of TDN-3Chol can effectively deliver p53 siRNA to the mouse renal tubular tissue, resulting in successful knockdown of p53 and demonstrating its potential for preventing acute kidney injury. Furthermore, TDN-3Chol is not exhibited significant toxicity in mice, highlighting its promising role as a non-viral vector for targeted gene expression regulation in the kidneys. The designed non-viral vector as a prophylactic medication shows potential in addressing the current clinical challenges associated with nephrotoxic drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202311690 | DOI Listing |
Nat Commun
January 2025
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing, China.
Artificial simulated communication networks inspired by molecular communication in organisms use biological and chemical molecules as information carriers to realize information transmission. However, the design of programmable, multiplexed and general simulation models remains challenging. Here, we develop a DNA nanostructure recognition-based artificial molecular communication network (DR-AMCN), in which rectangular DNA origami nanostructures serve as nodes and their recognition as edges.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
Cancers still globally endanger millions of people yearly; the incidences/mortalities of colorectal cancers are particularly increasing. The natural nanoparticles (NPs) and marine biopolymers were anticipated to provide effectual safe significances for managing cancers. The transformation of curcumin to nano-curcumin (NCur) was conducted with gum Arabic.
View Article and Find Full Text PDFNat Commun
January 2025
Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, P. R. China.
Delivering plasmid DNA (pDNA) to solid tumors remains a significant challenge due to the requirement for multiple transport steps and the need to promote delivery efficiency. Herein, we present a virus-mimicking hybrid lipoplex, composed of an arginine-rich cationic lipid, hyaluronic acid derivatives coated gold nanoparticles, and pDNA. This system induces cytoskeletal rearrangements through "outside-in" mechanical and "inside-out" biochemical signaling, overcoming intra- and intercellular barriers to enhance pDNA delivery.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
Rheumatoid arthritis (RA) remains a challenging autoimmune disease due to its complex and heterogeneous pathophysiology, which complicates therapeutic and diagnostic efforts. Advances in DNA nanotechnology have introduced DNA nanomaterials as promising tools to overcome these barriers. This review focuses on three primary categories of DNA nanomaterials applied in RA: DNA nanostructures, DNA aptamers, and DNA-modified nanoparticles.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
Conventional solid/liquid electrochemical interfaces typically encounter challenges with impeded mass transport for poor electrochemical quantification due to the intricate pathways of reactants from the bulk solution. To address this issue, this work reports an innovative approach integrating a target-activated DNA framework nanomachine with electrochemically driven metal-organic framework (MOF) conversion for self-sacrificial biosensing. The presence of the target biomarker serotonin initiates the DNA framework nanomachine by an entropy-driven circuit to form a cross-linked nanostructure and subsequently release the Fe-MOF probe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!