Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Industry- and occupation-based carcinogen exposure matrices play a pivotal role in preventing occupational cancer. While the Korean CARcinogen EXposure (K-CAREX) has been developed in recent years to assess exposure prevalence and intensity by industry, the feasibility of constructing an occupation-based exposure matrix remains unexplored. Hence, the objective of this study is to explore the potential of combining the nationwide work environment measurement database (WEMD) and the special health examination database (SHED) to develop a comprehensive occupation-based exposure matrix.
Methods: The WEMD provides information on airborne lead measurements, including industry codes, but it does not include data related to occupations. In contrast, the SHED contains information on both occupation and blood lead levels. By integrating these 2 databases, we attempted to assess airborne lead exposure levels by occupation. Additionally, we performed a rank correlation analysis to compare the airborne exposure levels with corresponding blood lead levels according to occupation.
Results: A total of 35 425 workers who both wore air samplers for lead and underwent special health examinations for lead were extracted between 2019 and 2021. An occupation-based exposure matrix was developed to evaluate the intensity of lead exposure across a range of occupations, encompassing 51 minor occupations and 70-unit occupations. Rank correlation analyses showed strong positive correlations between airborne lead and blood lead measurements according to occupation.
Conclusions: Our study findings suggest that combining 2 nationwide surveillance databases can be an effective approach for creating an occupation-based exposure matrix. However, our results also highlight several limitations that need to be addressed in future studies to improve the accuracy and reliability of such matrices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/annweh/wxae006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!