The reconstruction and novel view synthesis of dynamic scenes recently gained increased attention. As reconstruction from large-scale multi-view data involves immense memory and computational requirements, recent benchmark datasets provide collections of single monocular views per timestamp sampled from multiple (virtual) cameras. We refer to this form of inputs as monocularized data. Existing work shows impressive results for synthetic setups and forward-facing real-world data, but is often limited in the training speed and angular range for generating novel views. This paper addresses these limitations and proposes a new method for full 360 inward-facing novel view synthesis of non-rigidly deforming scenes. At the core of our method are: 1) An efficient deformation module that decouples the processing of spatial and temporal information for accelerated training and inference; and 2) A static module representing the canonical scene as a fast hash-encoded neural radiance field. In addition to existing synthetic monocularized data, we systematically analyze the performance on real-world inward-facing scenes using a newly recorded challenging dataset sampled from a synchronized large-scale multi-view rig. In both cases, our method is significantly faster than previous methods, converging in less than 7 minutes and achieving real-time framerates at 1K resolution, while obtaining a higher visual accuracy for generated novel views. Our code and dataset are available online: https://github.com/MoritzKappel/MoNeRF.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2024.3367431DOI Listing

Publication Analysis

Top Keywords

monocularized data
12
novel view
8
view synthesis
8
large-scale multi-view
8
novel views
8
data
5
fast non-rigid
4
non-rigid radiance
4
radiance fields
4
fields monocularized
4

Similar Publications

The reconstruction and novel view synthesis of dynamic scenes recently gained increased attention. As reconstruction from large-scale multi-view data involves immense memory and computational requirements, recent benchmark datasets provide collections of single monocular views per timestamp sampled from multiple (virtual) cameras. We refer to this form of inputs as monocularized data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!