Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The partition coefficient (log ) is an important physicochemical property that provides information regarding a molecule's pharmacokinetics, toxicity, and bioavailability. Methods to accurately predict the partition coefficient have the potential to accelerate drug design. In an effort to test current methods and explore new computational techniques, the statistical assessment of the modeling of proteins and ligands (SAMPL) has established a blind prediction challenge. The ninth iteration challenge was to predict the toluene-water partition coefficient (log ) of sixteen drug molecules. Herein, three approaches are reported broadly under the categories of quantum mechanics (QM), molecular mechanics (MM), and data-driven machine learning (ML). The three blind submissions yield mean unsigned errors (MUE) ranging from 1.53-2.93 log units. The MUEs were reduced to 1.00 log for the QM methods. While MM and ML methods outperformed DFT approaches for challenge molecules with fewer rotational degrees of freedom, they suffered for the larger molecules in this dataset. Overall, DFT functionals paired with a triple-ζ basis set were the simplest and most effective tool to obtain quantitatively accurate partition coefficients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938873 | PMC |
http://dx.doi.org/10.1039/d3cp04140a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!