Is radiomics a useful addition to magnetic resonance imaging in the preoperative classification of PitNETs?

Acta Neurochir (Wien)

Quantitative Imaging Research and Artificial Intelligence Lab, Department of Radiation Oncology Unit II, Ida B Scudder Cancer Centre, Christian Medical College, Vellore, India.

Published: February 2024

Background: The WHO 2021 introduced the term pituitary neuroendocrine tumours (PitNETs) for pituitary adenomas and incorporated transcription factors for subtyping, prompting the need for fresh diagnostic methods. Current biomarkers struggle to distinguish between high- and low-risk non-functioning PitNETs. We explored if radiomics can enhance preoperative decision-making.

Methods: Pre-treatment magnetic resonance (MR) images of patients who underwent surgery between 2015 and 2019 with available WHO 2021 classification were used. The tumours were manually segmented on the T1w, T1-contrast enhanced, and T2w images using 3D Slicer. One hundred Pyradiomic features were extracted from each MR sequence. Models were built to classify (1) somatotroph and gonadotroph PitNETs and (2) high- and low-risk subtypes of non-functioning PitNETs. Feature were selected independently from the MR sequences and multi-sequence (combining data from more than one MR sequence) using Boruta and Pearson correlation. Support vector machine (SVM), logistic regression (LR), random forest (RF), and multi-layer perceptron (MLP) were the classifiers used. Data imbalance was addressed using the Synthetic Minority Oversampling TEchnique (SMOTE). Performance of the models were evaluated using area under the receiver operating curve (AUC), accuracy, sensitivity, and specificity.

Results: A total of 222 PitNET patients (train, n = 149; test, n = 73) were enrolled in this retrospective study. Multi-sequence-based LR model discriminated best between somatotroph and gonadotroph PitNETs, with a test AUC of 0.84, accuracy of 0.74, specificity of 0.81, and sensitivity of 0.70. Multi-sequence-based MLP model perfomed best for the high- and low-risk non-functioning PitNETs, achieving a test AUC of 0.76, accuracy of 0.67, specificity of 0.72, and sensitivity of 0.66.

Conclusions: Utilizing pre-treatment MRI and radiomics holds promise for distinguishing high-risk from low-risk non-functioning PitNETs based on the latest WHO classification. This could assist neurosurgeons in making critical decisions regarding surgery or alternative management strategies for PitNETs after further clinical validation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00701-024-05977-4DOI Listing

Publication Analysis

Top Keywords

non-functioning pitnets
16
high- low-risk
12
low-risk non-functioning
12
magnetic resonance
8
pitnets
8
somatotroph gonadotroph
8
gonadotroph pitnets
8
test auc
8
radiomics addition
4
addition magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!