A reduced-order-model-based equivalent circuit for piezoelectric micro-electro-mechanical-system loudspeakers modeling.

J Acoust Soc Am

Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans, 72085, France.

Published: February 2024

Piezoelectric micro-electro-mechanical-system (MEMS) speakers are emerging as promising implementations of loudspeakers at the microscale, as they are able to meet the ever-increasing requirements for modern audio devices to become smaller, lighter, and integrable into digital systems. In this work, we propose a finite element model (FEM)-assisted lumped-parameters equivalent circuit for a fast and accurate modeling of these types of devices. The electro-mechanical parameters are derived from a pre-stressed FEM eigenfrequency analysis, to account for arbitrarily complex geometries and for the shift of the speaker resonance frequency due to an initial non-null pre-deflected configuration. The parameters of the acoustical circuit are instead computed through analytical formulas. The acoustic short-circuit between the speaker front and rear sides is taken into account through a proper air-gaps modeling. The very good matching in terms of radiated sound pressure level among the equivalent circuit predictions, FEM simulations, and experimental data proves the ability of the proposed method to accurately simulate the speaker performance. Moreover, due to its generality, it represents a versatile tool for designing piezoelectric MEMS speakers.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0024939DOI Listing

Publication Analysis

Top Keywords

equivalent circuit
12
piezoelectric micro-electro-mechanical-system
8
mems speakers
8
reduced-order-model-based equivalent
4
circuit
4
circuit piezoelectric
4
micro-electro-mechanical-system loudspeakers
4
loudspeakers modeling
4
modeling piezoelectric
4
micro-electro-mechanical-system mems
4

Similar Publications

Integration of Through-Sapphire Substrate Machining with Superconducting Quantum Processors.

Adv Mater

January 2025

Oxford Quantum Circuits, Thames Valley Science Park, Shinfield, Reading, RG2 9LH, UK.

A sapphire machining process integrated with intermediate-scale quantum processors is demonstrated. The process allows through-substrate electrical connections, necessary for low-frequency mode-mitigation, as well as signal-routing, which are vital as quantum computers scale in qubit number, and thus dimension. High-coherence qubits are required to build fault-tolerant quantum computers and so material choices are an important consideration when developing a qubit technology platform.

View Article and Find Full Text PDF

In this work, a specially designed multilayer indium tin oxide (ITO) mesh structure metasurface was proposed as a microwave absorber, achieving both excellent angle-insensitive broadband absorption and high shielding effectiveness (SE). It features gradually changing surface resistance ( ), to expand the absorption bandwidth while maintaining high SE. Also, a folded square ring metasurface was designed to effectively suppress surface wave grating lobes, as well as to reduce the unit size of the metasurface and thus the absorber.

View Article and Find Full Text PDF

Background: Radiofrequency (RF) transmit arrays play a crucial role in various MRI applications, offering enhanced field control and improved imaging capabilities. Designing and optimizing these arrays, particularly in high-field MRI settings, poses challenges related to coupling, resonance, and construction imperfections. Numerical electromagnetic simulation methods effectively aid in the initial design, but discrepancies between simulated and fabricated arrays often necessitate fine-tuning.

View Article and Find Full Text PDF

Strain sensing fabrics are able to sense the deformation of the outside world, bringing more accurate and real-time monitoring and feedback to users. However, due to the lack of clear sensing mechanism for high sensitivity and high linearity carbon matrix composites, the preparation of high performance strain sensing fabric weaving is still a major challenge. Here, an elastic polyurethane(PU)-based conductive fabric(GCPU) with high sensitivity, high linearity and good hydrophobicity is prepared by a novel synergistic conductive network strategy.

View Article and Find Full Text PDF

High dielectric constants with less dielectric loss composites is highly demandable for technological advancements across various fields, including energy storage, sensing, and telecommunications. Their significance lies in their ability to enhance the performance and efficiency of a wide range of devices and systems. In this work, the dielectric performance of graphene oxide (GO) reinforced plasticized starch (PS) nanocomposites (PS/GO) for different concentrations of GO nanofiller was studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!