RhoGDIβ inhibition via miR-200c/AUF1/SOX2/miR-137 axis contributed to lncRNA MEG3 downregulation-mediated malignant transformation of human bronchial epithelial cells.

Mol Carcinog

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Published: May 2024

Nickel pollution is a recognized factor contributing to lung cancer. Understanding the molecular mechanisms of its carcinogenic effects is crucial for lung cancer prevention and treatment. Our previous research identified the downregulation of a long noncoding RNA, maternally expressed gene 3 (MEG3), as a key factor in transforming human bronchial epithelial cells (HBECs) into malignant cells following nickel exposure. In our study, we found that deletion of MEG3 also reduced the expression of RhoGDIβ. Notably, artificially increasing RhoGDIβ levels counteracted the malignant transformation caused by MEG3 deletion in HBECs. This indicates that the reduction in RhoGDIβ contributes to the transformation of HBECs due to MEG3 deletion. Further exploration revealed that MEG3 downregulation led to enhanced c-Jun activity, which in turn promoted miR-200c transcription. High levels of miR-200c subsequently increased the translation of AUF1 protein, stabilizing SOX2 messenger RNA (mRNA). This stabilization affected the regulation of miR-137, SP-1 protein translation, and the suppression of RhoGDIβ mRNA transcription and protein expression, leading to cell transformation. Our study underscores the co-regulation of RhoGDIβ expression by long noncoding RNA MEG3, multiple microRNAs (miR-200c and miR-137), and RNA-regulated transcription factors (c-Jun, SOX2, and SP1). This intricate network of molecular events sheds light on the nature of lung tumorigenesis. These novel findings pave the way for developing targeted strategies for the prevention and treatment of human lung cancer based on the MEG3/RhoGDIβ pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mc.23702DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
malignant transformation
8
human bronchial
8
bronchial epithelial
8
epithelial cells
8
cells nickel
8
prevention treatment
8
long noncoding
8
meg3 deletion
8
rhogdiβ
6

Similar Publications

Purpose: Nano-drug delivery systems (NDDS) have become a promising alternative and adjunctive strategy for lung cancer (LC) treatment. However, comprehensive bibliometric analyses examining global research efforts on NDDS in LC are scarce. This study aims to fill this gap by identifying key research trends, emerging hotspots, and collaboration networks within the field of NDDS and LC.

View Article and Find Full Text PDF

Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

Background: The benefit of treatment with tyrosine kinase inhibitors targeting the epidermal growth factor receptor (EGFR-TKI) for lung adenocarcinoma (ADC), stratified by ethnicity, has not yet been fully elucidated.

Methods: We searched PubMed, Embase, and Cochrane databases for studies that investigated EGFR-TKI for lung ADC. We computed hazard ratios (HRs) or risk ratios (RRs) for binary endpoints, with 95% confidence intervals (CIs).

View Article and Find Full Text PDF

Background: The use of local consolidative therapy (LCT) in patients with oligometastatic non-small cell lung cancer (NSCLC) is rapidly evolving, with a preponderance of data supporting the benefits of such therapeutic approaches incorporating pulmonary resection for appropriately selected candidates. However, practices vary widely institutionally and regionally, and evidence-based guidelines are lacking.

Methods: The Society of Thoracic Surgeons assembled a panel of thoracic surgical oncologists to evaluate and synthesize the available evidence regarding the role of pulmonary resection as LCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!