Sry on the Y-chromosome upregulates Sox9, which in turn upregulates a set of genes such as Fgf9 to initiate testicular differentiation in the XY gonad. In the absence of Sry expression, genes such as Rspo1, Foxl2, and Runx1 support ovarian differentiation in the XX gonad. These two pathways antagonize each other to ensure the development of only one gonadal sex in normal development. In the B6.YTIR mouse, carrying the YTIR-chromosome on the B6 genetic background, Sry is expressed in a comparable manner with that in the B6.XY mouse, yet, only ovaries or ovotestes develop. We asked how testicular and ovarian differentiation pathways interact to determine the gonadal sex in the B6.YTIR mouse. Our results showed that (1) transcript levels of Sox9 were much lower than in B6.XY gonads while those of Rspo1 and Runx1 were as high as B6.XX gonads at 11.5 and 12.5 days postcoitum. (2) FOXL2-positive cells appeared in mosaic with SOX9-positive cells at 12.5 days postcoitum. (3) SOX9-positive cells formed testis cords in the central area while those disappeared to leave only FOXL2-positive cells in the poles or the entire area at 13.5 days postcoitum. (4) No difference was found at transcript levels of all genes between the left and right gonads up to 12.5 days postcoitum, although ovotestes developed much more frequently on the left than the right at 13.5 days postcoitum. These results suggest that inefficient Sox9 upregulation and the absence of Rspo1 repression prevent testicular differentiation in the B6.YTIR gonad.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094394 | PMC |
http://dx.doi.org/10.1093/biolre/ioae018 | DOI Listing |
Front Cell Dev Biol
November 2024
Laboratorio de Biología de la Reproducción, Instituto Nacional de Pediatría, Mexico City, Mexico.
Background: Congenital hypothyroidism (CH) is a pathology that affects various organs, including the testicles. The mechanisms by which this condition alters fertility is unknown. This study aimed at determining if experimental CH affects gonocyte differentiation and arrests meiosis; and the possible role of the Sertoli cell (SC) in this condition.
View Article and Find Full Text PDFReprod Dev Med
December 2024
Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
Objective: Female mice exhibit progressive progesterone (P4) deficiency, luteal cell degeneration, and premature embryo implantation failure at 5 months old. We attempted to rescue embryo implantation in non-virgin mice (5-6 months old) with exogenous P4 treatment on days 1.5 post-coitum (D1.
View Article and Find Full Text PDFAnimals (Basel)
September 2024
Department of Animal Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
Blood Adv
September 2024
Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA.
In utero hematopoietic cell transplantation is an experimental nonmyeloablative therapy with potential applications in hematologic disorders, including sickle cell disease (SCD). Its clinical utility has been limited due to the early acquisition of T-cell immunity beginning at ∼14 weeks gestation, posing significant technical challenges and excluding treatment fetuses evaluated after the first trimester. Using murine neonatal transplantation at 20 days postcoitum (DPC) as a model for late-gestation transplantation (LGT) in humans, we investigated whether immune modulation with anti-CD3 monoclonal antibody (mAb) could achieve donor-specific tolerance and sustained allogeneic engraftment comparable with that of the early-gestation fetal recipient at 14 DPC.
View Article and Find Full Text PDFBiol Reprod
May 2024
Department of Biology, McGill University, Montreal, Quebec, Canada.
Sry on the Y-chromosome upregulates Sox9, which in turn upregulates a set of genes such as Fgf9 to initiate testicular differentiation in the XY gonad. In the absence of Sry expression, genes such as Rspo1, Foxl2, and Runx1 support ovarian differentiation in the XX gonad. These two pathways antagonize each other to ensure the development of only one gonadal sex in normal development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!