Unlabelled: Flowers are colonized by a diverse community of microorganisms that can alter plant health and interact with floral pathogens. is a flower-inhabiting bacterium and a pathogen that infects different plant species, including (apple). Previously, we showed that the co-inoculation of two bacterial strains, members of the genera and isolated from apple flowers, reduced disease incidence caused by this floral pathogen. Here, we decipher the ecological interactions between the two flower-associated bacteria and in field experimentation and co-cultures. The two flower commensal strains did not competitively exclude from the stigma habitat, as both bacteria and the pathogen co-existed on the stigma of apple flowers and . This suggests that plant protection might be mediated by other mechanisms than competitive niche exclusion. Using a synthetic stigma exudation medium, ternary co-culture of the bacterial strains led to a substantial alteration of gene expression in both the pathogen and the two microbiota members. Importantly, the gene expression profiles for the ternary co-culture were not just additive from binary co-cultures, suggesting that some functions only emerged in multipartite co-culture. Additionally, the ternary co-culture of the strains resulted in a stronger acidification of the growth milieu than mono- or binary co-cultures, pointing to another emergent property of co-inoculation. Our study emphasizes the critical role of emergent properties mediated by inter-species interactions within the plant holobiont and their potential impact on plant health and pathogen behavior.
Importance: Fire blight, caused by , is one of the most important plant diseases of pome fruits. Previous work largely suggested plant microbiota commensals suppressed disease by antagonizing pathogen growth. However, inter-species interactions of multiple flower commensals and their influence on pathogen activity and behavior have not been well studied. Here, we show that co-inoculating two bacterial strains that naturally colonize the apple flowers reduces disease incidence. We further demonstrate that the interactions between these two microbiota commensals and the floral pathogen led to the emergence of new gene expression patterns and a strong alteration of the external pH, factors that may modify the pathogen's behavior. Our findings emphasize the critical role of emergent properties mediated by inter-species interactions between plant microbiota and plant pathogens and their impact on plant health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936193 | PMC |
http://dx.doi.org/10.1128/mbio.00213-24 | DOI Listing |
J Mol Evol
December 2024
Department of Zoology, Hansraj College, University of Delhi, Mahatma Hansraj Marg, Malkaganj, Delhi, 110007, India.
The urgency to understand the complex interactions between viruses, their animal reservoirs, and human populations has been necessitated by the continuous spread of zoonotic viral diseases as evidenced in epidemics and pandemics throughout human history. Riboviruses are involved in some of the most prevalent human diseases, responsible for causing epidemics and pandemics. These viruses have an animal origin and have been known to cross the inter-species barrier time and time again, eventually infecting human beings.
View Article and Find Full Text PDFCell Host Microbe
January 2025
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:
Clostridioides difficile can transiently or persistently colonize the human gut, posing a risk for infections. This colonization is influenced by complex molecular and ecological interactions with the human gut microbiota. By investigating C.
View Article and Find Full Text PDFFront Microbiol
December 2024
Faculty of Biology, Research Group Biological Sensor-Actuator-Systems, TUD Dresden University of Technology, Dresden, Germany.
Understanding communication among microorganisms through the array of signal molecules and establishing controlled signal transfer between different species is a major goal of the future of biotechnology, and controlled multispecies bioreactor cultivations will open a wide range of applications. In this study, we used two quorum-sensing peptides from - namely, the competence and sporulation factor (CSF) and (PhrF)-to establish a controlled interkingdom communication system between prokaryotes and eukaryotes. For this purpose, we engineered as a reporter capable of detecting the CSF and PhrF peptides heterologously produced by the yeast .
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
December 2024
Department of Microbiology, Government Science College, Vankal, Surat, 394 430, Gujarat, India.
Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing.
View Article and Find Full Text PDFEvol Lett
December 2024
Department of Fundamental Microbiology, University of Lausanne, Lausanne 1015, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!