Unlabelled: Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains of and by competing a generalist T5-like phage able to infect both prey against P22, an -specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that the cost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest.

Importance: There is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and an system consisting of , , a T5-like generalist phage, and the specialist phage P22 to highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237722PMC
http://dx.doi.org/10.1128/msystems.01177-23DOI Listing

Publication Analysis

Top Keywords

bacteriophage specificity
12
prey species
12
prey
10
phage
10
interactions bacteria
8
role shaping
8
bacterial prey
8
microbial communities
8
predator specificity
8
phage strategy
8

Similar Publications

Microbe Profile: Typhimurium: the master of the art of adaptation.

Microbiology (Reading)

January 2025

Clinical Infection, Microbiology & Immunology Department, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK.

Typhimurium is a major serovar that is found globally. It is responsible for outbreaks of self-limiting gastroenteritis that are broadly linked to the industrialization of food production. .

View Article and Find Full Text PDF

A novel framework for phage-host prediction via logical probability theory and network sparsification.

Brief Bioinform

November 2024

Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.

Bacterial resistance has emerged as one of the greatest threats to human health, and phages have shown tremendous potential in addressing the issue of drug-resistant bacteria by lysing host. The identification of phage-host interactions (PHI) is crucial for addressing bacterial infections. Some existing computational methods for predicting PHI are suboptimal in terms of prediction efficiency due to the limited types of available information.

View Article and Find Full Text PDF

Background: Oral infectious diseases, such as dental caries, periodontitis and periapical periodontitis, are often complicated by causative bacterial biofilm formation and significantly impact human oral health and quality of life. Bacteriophage (phage) therapy has emerged as a potential alternative with successful applications in antimicrobial trials. While therapeutic use of phages has been considered as effective treatment of some infectious diseases, related research focusing on oral infectious diseases is few and lacks attention.

View Article and Find Full Text PDF

Diversity-generating retroelements (DGRs) create massive protein sequence variation (up to 10) in ecologically diverse microorganisms. A recent survey identified around 31,000 DGRs from more than 1,500 bacterial and archaeal genera, constituting more than 90 environment types. DGRs are especially enriched in the human gut microbiome and nano-sized microorganisms that seem to comprise most microbial life and maintain DGRs despite reduced genomes.

View Article and Find Full Text PDF

Using BW25113 as a host, we isolated a novel lytic phage from the commercial poly-specific therapeutic phage cocktail Sextaphage (Microgen, Russia). We provide genetic and phenotypic characterization of the phage and describe its host range on the ECOR collection of reference strains. The phage, hereafter named Sxt1, is a close relative of classical coliphage T3 and belongs to the genus, yet its internal virion proteins, forming an ejectosome, differ from those of T3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!